Home
Class 12
MATHS
The value of lim (xto0) (cos (sin x )- c...

The value of `lim _(xto0) (cos (sin x )- cos x)/(x ^(4))` is equal to :

A

`1/5`

B

`1/6`

C

`1/4`

D

`(1)/(12)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{\cos(\sin x) - \cos x}{x^4} \), we can follow these steps: ### Step 1: Apply the Cosine Difference Formula We start by using the trigonometric identity for the difference of cosines: \[ \cos a - \cos b = -2 \sin\left(\frac{a + b}{2}\right) \sin\left(\frac{a - b}{2}\right) \] In our case, let \( a = \sin x \) and \( b = x \). Thus, we have: \[ \cos(\sin x) - \cos x = -2 \sin\left(\frac{\sin x + x}{2}\right) \sin\left(\frac{\sin x - x}{2}\right) \] Substituting this into our limit gives: \[ \lim_{x \to 0} \frac{-2 \sin\left(\frac{\sin x + x}{2}\right) \sin\left(\frac{\sin x - x}{2}\right)}{x^4} \] ### Step 2: Simplify the Limit Next, we need to analyze \( \sin\left(\frac{\sin x - x}{2}\right) \). Using the Taylor series expansion for small \( x \): \[ \sin x \approx x - \frac{x^3}{6} + O(x^5) \] Thus, \[ \sin x - x \approx -\frac{x^3}{6} + O(x^5) \] This implies: \[ \frac{\sin x - x}{2} \approx -\frac{x^3}{12} + O(x^5) \] So, \[ \sin\left(\frac{\sin x - x}{2}\right) \approx \frac{-x^3}{12} \] ### Step 3: Substitute Back into the Limit Now substituting back into our limit: \[ \lim_{x \to 0} \frac{-2 \sin\left(\frac{\sin x + x}{2}\right) \left(-\frac{x^3}{12}\right)}{x^4} \] As \( x \to 0 \), \( \sin\left(\frac{\sin x + x}{2}\right) \to \sin(0) = 0 \). We can approximate it: \[ \sin\left(\frac{\sin x + x}{2}\right) \approx \frac{\sin x + x}{2} \approx \frac{x + x}{2} = x \] So we have: \[ \lim_{x \to 0} \frac{-2 \cdot x \cdot \left(-\frac{x^3}{12}\right)}{x^4} = \lim_{x \to 0} \frac{2x^4/12}{x^4} = \lim_{x \to 0} \frac{2}{12} = \frac{1}{6} \] ### Final Answer Thus, the value of the limit is: \[ \boxed{\frac{1}{6}} \]
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VK JAISWAL ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • LIMIT

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|8 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|6 Videos
  • LOGARITHMS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(x to 0) (log(sin 5x + cos 5x))/(tan 3x) is equal to

The value of lim_(xto0) (1-(cosx)sqrt(cos2x))/(x^(2)) is

The value of lim_(xto0)(x sin (sinxx)-sin^(2)x)/(x^(6)) equals

The vlaue of lim _(xto0) ((sin x)/(x )) ^((1)/(1- cos x )) :

The value of lim_(x to 0) ("sin" (pi cos^(2) x))/(x^(2)) equals

The value of lim_(xto0)(cos ax)^(cosec^(2)bx) is

The value of lim_(x to (pi)/(4)) ("sin" x - cos x)/((x - (pi)/(4))) equals

The value of lim_(xrarr 0) (1-cos(1-cos x))/(x^4) is equal to

lim_(x -0) (1 - cos 4x)/(x^(2)) is equal to

lim_(xto0) ((1-cos2x)(3+cosx))/(xtan4x) is equal to