Home
Class 12
MATHS
The value of ordered pair (a,b) such tha...

The value of ordered pair (a,b) such that `lim _(xto0) (x (1+ a cos x ) -b sin x )/( x ^(3))=1,` is:

A

`(-(5)/(2), -(3)/(2))`

B

`((5)/(2), (3)/(2))`

C

`(-(5)/(2),( 3)/(2))`

D

`((5 )/(2),(3)/(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we need to find the ordered pair \((a, b)\) such that: \[ \lim_{x \to 0} \frac{x(1 + a \cos x - b \sin x)}{x^3} = 1 \] ### Step-by-Step Solution: 1. **Rewrite the Limit**: We start by rewriting the limit expression: \[ \lim_{x \to 0} \frac{x(1 + a \cos x - b \sin x)}{x^3} = \lim_{x \to 0} \frac{1 + a \cos x - b \sin x}{x^2} \] 2. **Expand \(\cos x\) and \(\sin x\)**: Using Taylor series expansions around \(x = 0\): \[ \cos x \approx 1 - \frac{x^2}{2} + O(x^4) \] \[ \sin x \approx x - \frac{x^3}{6} + O(x^5) \] 3. **Substitute the Expansions**: Substitute these expansions into the limit: \[ 1 + a(1 - \frac{x^2}{2}) - b(x - \frac{x^3}{6}) = 1 + a - \frac{a}{2}x^2 - bx + \frac{b}{6}x^3 + O(x^4) \] 4. **Combine Like Terms**: Rearranging gives: \[ (1 + a) - bx - \frac{a}{2}x^2 + \frac{b}{6}x^3 + O(x^4) \] 5. **Set Up the Limit**: Now, we can write the limit: \[ \lim_{x \to 0} \frac{(1 + a) - bx - \frac{a}{2}x^2 + \frac{b}{6}x^3 + O(x^4)}{x^2} \] 6. **Analyze the Limit**: For the limit to exist and equal 1, we need: - The constant term \(1 + a\) must be \(0\) (to avoid divergence). - The coefficient of \(x^2\) must equal \(-1\) (to ensure the limit equals 1). 7. **Set Up the Equations**: From \(1 + a = 0\): \[ a = -1 \] From \(-\frac{a}{2} + \frac{b}{6} = 1\): \[ -\frac{-1}{2} + \frac{b}{6} = 1 \implies \frac{1}{2} + \frac{b}{6} = 1 \] \[ \frac{b}{6} = 1 - \frac{1}{2} = \frac{1}{2} \implies b = 3 \] 8. **Final Ordered Pair**: Thus, the ordered pair \((a, b)\) is: \[ (a, b) = (-1, 3) \] ### Final Answer: The value of the ordered pair \((a, b)\) is \((-1, 3)\).
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VK JAISWAL ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • LIMIT

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|8 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|6 Videos
  • LOGARITHMS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

lim _(xto0) ((cos x -secx )/(x ^(2) (x+1)))=

Find the values of a and b in order that lim_(xto0) (x(1+acosx)-bsinx)/(x^(3))=1.

If lim _(xto0) (a cos x)/(x^2) + (b)/(x ^(2))=1/3, then b-a=

The value of lim _(xto0) (cos (sin x )- cos x)/(x ^(4)) is equal to :

Find the values of a and b in order that lim_(x->0) (x(1+a cos x)-b sinx)/x^3=1 [using L' Hospital' srule].

Evaluate lim_(xto0) (1-cos2x)/x^(2)

Evaluate lim_(xto0)x^(3)"cos"2/x .

Evalaute lim_(xto0) (x2^(x)-x)/(1-cosx)

Evaluate the following limits : Lim_(xto0) ((tan x- sin x)/(x^(3)))

lim_(xto0)((a+x)^2sin(a+x)-a^2sina)/x