Home
Class 12
MATHS
Consider the sequence : u(n) =sum (r=1)^...

Consider the sequence : `u_(n) =sum _(r=1)^(n) (r)/(2 ^(r)')n ge1` Then the limit of `u_(n)as n to oo` is:

A

1

B

e

C

`1/2`

D

2

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VK JAISWAL ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • LIMIT

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|8 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|6 Videos
  • LOGARITHMS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

Consider the sequence u_n=sum_(r=1)^n r/2^r , n >= 1 then the limit_(n->oo) u_n

lim_(n to oo) sum_(r=1)^(n) (1)/(n)e^(r//n) is

lim_(nto oo)sum_(r=1)^(n)r/(n^(2)+n+4) equals

Find the sum of sum_(r=1)^n(r^n C_r)/(^n C_(r-1) .

If f(n)=sum_(r=1)^(n) r^(4) , then the value of sum_(r=1)^(n) r(n-r)^(3) is equal to

Find the sum sum_(r=1)^(n) r^(2) (""^(n)C_(r))/(""^(n)C_(r-1)) .

sum_(r=1)^n r (n-r +1) is equal to :

sum_(r=1)^n r(n-r) is equal to :

The value of lim_(n to oo) sum_(r=1)^(n)(r^(2))/(r^(3)+n^(3)) is -

If a_(n) = sum_(r=0)^(n) (1)/(""^(n)C_(r)) , find the value of sum_(r=0)^(n) (r)/(""^(n)C_(r))