Home
Class 12
MATHS
The value of lim (xto oo) ((n !)/(n ^(n)...

The value of `lim _(xto oo) ((n !)/(n ^(n)))^((3n^(3)+4)/(4n ^(4)-1)), n inN` is equal to:

A

`((1)/(e ))^(3//4)`

B

`e ^(3//4)`

C

`e ^(-1)`

D

0

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VK JAISWAL ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • LIMIT

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|8 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|6 Videos
  • LOGARITHMS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(n to oo)((n!)/(n^(n)))^((2n^(4)+1)/(5n^(5)+1)) is equal

The value of lim_(n->oo) n^(1/n)

lim_(n to oo)(n!)/((n+1)!-n!)

The value of lim_(n to oo) sum_(r=1)^(n)(r^(2))/(r^(3)+n^(3)) is -

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r))) is :

The value of lim_(n rarroo) sum_(r=1)^(n)(1)/(sin{((n+r)pi)/(4n)}).(pi)/(n) is equal to

The value of lim_(xtooo) {(1)/(3)+(2)/(21)+(3)/(91)+...+(n)/(n^4+n^2+1)} , is

The value of lim_(n to oo) (2n^(2) - 3n + 1)/(5n^(2) + 4n + 2) equals

Evaluate: ("lim")_(n rarr oo)[(n !)/(n^n)]^(1//n)

Find the value of lim_(n to oo) (tan(sum_(r=1)^(n) tan^(-1)((4)/(4r^(2)+3)))) .