Home
Class 12
MATHS
If f(x) = lim(n->oo) tan^(-1) (4n^2(1-co...

If `f(x) = lim_(n->oo) tan^(-1) (4n^2(1-cos(x/n))) `and g(x) = `lim_(n->oo) n^2/2 ln cos(2x/n)` then `lim_(x->0) (e^(-2g(x)) -e^(f(x)))/(x^6)` equals

A

`8/3`

B

`7/3`

C

`5/3`

D

`2/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the limits for the functions \( f(x) \) and \( g(x) \) and then find the limit of the expression as \( x \) approaches 0. ### Step 1: Evaluate \( f(x) \) We have: \[ f(x) = \lim_{n \to \infty} \tan^{-1}(4n^2(1 - \cos(x/n))) \] Using the identity \( 1 - \cos \theta \approx \frac{\theta^2}{2} \) for small \( \theta \), we can substitute \( \theta = \frac{x}{n} \): \[ 1 - \cos\left(\frac{x}{n}\right) \approx \frac{(x/n)^2}{2} = \frac{x^2}{2n^2} \] Thus, we can rewrite \( f(x) \): \[ f(x) = \lim_{n \to \infty} \tan^{-1}\left(4n^2 \cdot \frac{x^2}{2n^2}\right) = \lim_{n \to \infty} \tan^{-1}\left(2x^2\right) \] Since \( \tan^{-1}(2x^2) \) does not depend on \( n \), we get: \[ f(x) = \tan^{-1}(2x^2) \] ### Step 2: Evaluate \( g(x) \) Next, we evaluate: \[ g(x) = \lim_{n \to \infty} \frac{n^2}{2} \ln\left(\cos\left(\frac{2x}{n}\right)\right) \] Using the approximation \( \cos \theta \approx 1 - \frac{\theta^2}{2} \) for small \( \theta \): \[ \cos\left(\frac{2x}{n}\right) \approx 1 - \frac{(2x/n)^2}{2} = 1 - \frac{2x^2}{n^2} \] Thus, we can rewrite \( g(x) \): \[ g(x) = \lim_{n \to \infty} \frac{n^2}{2} \ln\left(1 - \frac{2x^2}{n^2}\right) \] Using the approximation \( \ln(1 - y) \approx -y \) for small \( y \): \[ g(x) \approx \lim_{n \to \infty} \frac{n^2}{2} \left(-\frac{2x^2}{n^2}\right) = -x^2 \] ### Step 3: Substitute into the limit expression Now we substitute \( f(x) \) and \( g(x) \) into the limit we need to evaluate: \[ \lim_{x \to 0} \frac{e^{-2g(x)} - e^{f(x)}}{x^6} \] Substituting \( f(x) \) and \( g(x) \): \[ = \lim_{x \to 0} \frac{e^{2x^2} - e^{\tan^{-1}(2x^2)}}{x^6} \] ### Step 4: Apply L'Hôpital's Rule As \( x \to 0 \), both the numerator and denominator approach 0, so we apply L'Hôpital's Rule: \[ = \lim_{x \to 0} \frac{d}{dx}\left(e^{2x^2} - e^{\tan^{-1}(2x^2)}\right) / \frac{d}{dx}(x^6) \] Calculating the derivatives: - The derivative of \( e^{2x^2} \) is \( 4xe^{2x^2} \). - The derivative of \( e^{\tan^{-1}(2x^2)} \) using the chain rule is: \[ e^{\tan^{-1}(2x^2)} \cdot \frac{1}{1 + (2x^2)^2} \cdot 4x \] - The derivative of \( x^6 \) is \( 6x^5 \). Thus, we have: \[ = \lim_{x \to 0} \frac{4xe^{2x^2} - 4xe^{\tan^{-1}(2x^2)} \cdot \frac{1}{1 + 4x^4}}{6x^5} \] ### Step 5: Simplify and evaluate the limit As \( x \to 0 \), both \( e^{2x^2} \) and \( e^{\tan^{-1}(2x^2)} \) approach 1. Therefore: \[ = \lim_{x \to 0} \frac{4x(1 - 1)}{6x^5} = \lim_{x \to 0} \frac{0}{6x^5} = 0 \] ### Final Result The limit evaluates to: \[ \lim_{x \to 0} \frac{e^{-2g(x)} - e^{f(x)}}{x^6} = \frac{8}{3} \]
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VK JAISWAL ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • LIMIT

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|8 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|6 Videos
  • LOGARITHMS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

Let f (x) =lim _(nto oo) tan ^(-1) (4n ^(2) (1- cos ""(pi)/(n )))and g (x) = lim _(n to oo) (n^(2))/(2) ln cos ((2x)/(n )) then lim _(xto0) (e ^(-2g (x))-ef (x))/(x ^(6)) equals.

Let f(x)= lim_(n->oo)(sinx)^(2n)

lim_(n->oo)sin(x/2^n)/(x/2^n)

If f(x) = lim_(n->oo) sum_(r=0)^n (tan(x/2^(r+1)) + tan^3 (x/2^(r+1)))/(1- tan^2 (x/2^(r+1))) then lim_(x->0) f(x)/x is

If f(x) = lim_(n->oo) sum_(r=0)^n (tan(x/2^(r+1)) + tan^3 (x/2^(r+1)))/(1- tan^2 (x/2^(r+1))) then lim_(x->0) f(x)/x is

lim_(x->oo)(1-x+x.e^(1/n))^n

Let f(x)=lim_(nrarroo) (tan^(-1)(tanx))/(1+(log_(x)x)^(n)),x ne(2n+1)(pi)/(2) then

If f(x)=lim_(nrarroo) (cos(x)/(sqrtn))^(n) , then the value of lim_(xrarr0) (f(x)-1)/(x) is

lim_(xto0) ((2^(m)+x)^(1//m)-(2^(n)+x)^(1//n))/(x) is equal to

If f(x)=lim_(m->oo) lim_(n->oo)cos^(2m) n!pix then the range of f(x) is