Home
Class 12
MATHS
lim (xto0) (2e ^(sin x) -e ^(-sin x)-1)/...

`lim _(xto0) (2e ^(sin x) -e ^(-sin x)-1)/(x ^(2) +2x)` equals to :

A

`3/2`

B

`e ^(3//2)`

C

`2`

D

`e ^(2)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VK JAISWAL ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • LIMIT

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|8 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|6 Videos
  • LOGARITHMS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

The value of lim _(xto0) (cos (sin x )- cos x)/(x ^(4)) is equal to :

lim _( x to 0) (e ^(sin (x ))-1)/(x ) equals to :

Evaluate lim_(xto0) (e^(x)+e^(-x)-2)/(x^(2))

lim_(xto0) (e^(tanx)-e^x)/(tanx-x)=

Evaluate : lim_(xto0) (e^(x) -e^(-x))/x

lim_(xto0)((e^(x)-1)/x)^(1//x)

lim_(xto0)((a+x)^2sin(a+x)-a^2sina)/x

Evaluate lim_(xto0) (e^(x)-e^(-x)-2x)/(x-sinx).

Let f (x) =lim _(nto oo) tan ^(-1) (4n ^(2) (1- cos ""(pi)/(n )))and g (x) = lim _(n to oo) (n^(2))/(2) ln cos ((2x)/(n )) then lim _(xto0) (e ^(-2g (x))-ef (x))/(x ^(6)) equals.

The value of lim_(xto0)(x sin (sinxx)-sin^(2)x)/(x^(6)) equals