Home
Class 12
MATHS
If x1, x2, x3,........xn are the roots o...

If `x_1, x_2, x_3,........x_n` are the roots of `x^n + ax + b = 0`, then the value of `(x_1 - x_2)(x_1 - x_3) (x_1 - x_4) .......(x_1 – x_n)` is equal to

A

`nx _(1) +b`

B

` n x _(1)^(n-1) +a`

C

`nx _(1) ^(n-1)`

D

`nx _(1) ^(n-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \((x_1 - x_2)(x_1 - x_3)(x_1 - x_4) \cdots (x_1 - x_n)\) where \(x_1, x_2, x_3, \ldots, x_n\) are the roots of the polynomial \(x^n + ax + b = 0\). ### Step-by-Step Solution: 1. **Understanding the Polynomial**: The polynomial can be expressed in factored form as: \[ x^n + ax + b = (x - x_1)(x - x_2)(x - x_3) \cdots (x - x_n) \] This means that \(x_1, x_2, \ldots, x_n\) are the roots of the polynomial. 2. **Setting Up the Expression**: We want to evaluate: \[ (x_1 - x_2)(x_1 - x_3)(x_1 - x_4) \cdots (x_1 - x_n) \] This expression can be interpreted as the product of the differences between \(x_1\) and the other roots. 3. **Using Limits**: To find this product, we can use the fact that: \[ (x - x_1)(x - x_2)(x - x_3) \cdots (x - x_n) = x^n + ax + b \] We can take the limit as \(x\) approaches \(x_1\): \[ \lim_{x \to x_1} \frac{x^n + ax + b}{x - x_1} \] 4. **Applying L'Hôpital's Rule**: Since substituting \(x = x_1\) gives us the indeterminate form \(0/0\), we can apply L'Hôpital's Rule: \[ \lim_{x \to x_1} \frac{x^n + ax + b}{x - x_1} = \lim_{x \to x_1} \frac{n x^{n-1} + a}{1} \] 5. **Calculating the Limit**: Now we substitute \(x = x_1\): \[ n x_1^{n-1} + a \] 6. **Final Result**: Therefore, the value of the expression \((x_1 - x_2)(x_1 - x_3)(x_1 - x_4) \cdots (x_1 - x_n)\) is: \[ n x_1^{n-1} + a \]
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VK JAISWAL ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • LIMIT

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|8 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|6 Videos
  • LOGARITHMS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

If x_(1),x_(2),x_(3),…,x_(n) are the roots of the equation x^(n)+ax+b=0 , the value of (x_(1)-x_(2))(x_(1)-x_(3))(x_(1)-x_(4))…….(x_(1)-x_(n)) is

If x_(1),x_(2),x_(3),.,x_(n) are the roots of the equation x^(n)+ax+b=0 , the value of (x_(1)-x_(2))(x_(1)-x_(3))(x_(1)-x_(4))…….(x_(1)-x_(n)) is

If x1, x2, x3,....xn are n values of a variable X such that Find the value of n and the mean.

If x_1, a n dx_2 are the roots of x^2+(sintheta-1)x-1/2(cos^2theta)=0, then find the maximum value of x_1^2+x_2^2

If x_1, a n dx_2 are the roots of x^2+(sintheta-1)x-1/(2cos^2theta)=0, then find the maximum value of x1 2+x2 2dot

lim_(x->0)((1^x+2^x+...........+n^x)/n)^(1/x) is equal to

If x_n > x_(n-1) > ..........> x_3 > x_1 > 1. then the value of log_(x_1) [log_(x _2) {log_(x_3).........log_(x_n) (x_n)^(x_(r=i))}]

Q. if x_1,x_2......x_n are in H.P ., then sum_(r=1)^n x_r x_(r+1) is equal to : (A) (n-1)x_1 x_n (B) n x_1 x_n (C) (n+1)x_1 x_n (D) (n+2)x_1 x_n

If N is any four digit number say x_1, x_2, x_3, x_4 , then the maximum value ofis equal to N/(x_1+x_2+x_3+x_4) is equal to

If x-1/x=3,\ find the values of x^2+1/(x^2)a n d\ x^4+1/(x^4)dot