Home
Class 12
MATHS
Let f:R to R, f (x)= {:((-1)^(n) if, x =...

Let `f:R to R, f (x)= {:((-1)^(n) if, x = (1)/(2 ^(2 ^(n)))"," , n =1"," 2","3.....),(0, "otherwise", ):}` then identify the correct statement (s).

A

`lim_(xto0) f (x) f(2x)=0`

B

`lim _(xto0) f (x)` does not exist

C

`lim _(xto0) f (x) f (2x) =0`

D

` lim_(xto0) f (x) (2x)` does not exist

Text Solution

Verified by Experts

The correct Answer is:
B, C
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|8 Videos
  • LIMIT

    VK JAISWAL ENGLISH|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|1 Videos
  • LIMIT

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|6 Videos
  • LOGARITHMS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

Let f:R->R;f(x)={(-1)^n if x=1/(2^(2^n)), n=1,2,3.......... and 0 otherwisw then identity the correct statement (s).

If f(x)=(lim)_(nvecoo)(3/2+[cosx](sqrt(n^2+1)-sqrt(n^2-3n+1))) where [y] denotes largest integer lt=, then identify the correct statement(s). ("lim")_(nvecoo)f(x)=0 ("lim")_(nvecpi/2)f(x)=(3pi)/4 f(x)=(3x)/2AAx in [0,pi/2] f(x)=0AAx in (pi/2,(3pi)/2)

If f: R^+ to R , f(x) + 3x f(1/x)= 2(x+1),t h e n find f(x)

Let f : R rarr given by f(x) = 3x^(2) + 5x + 1 . Find f(0), f(1), f(2).

Let f :R -{(3)/(2)}to R, f (x) = (3x+5)/(2x-3).Let f _(1) (x)=f (x), f_(n) (x)=f (f _(n-1) (x))) for pige 2, n in N, then f _(2008) (x)+ f _(2009) (x)=

Let f(x)=x+f(x-1) for AAx in R . If f(0)=1,f i n d \ f(100) .

If f(x)=x^n ,f(1)+(f^1(1))/1+(f^2(1))/(2!)+(f^n(1))/(n !),w h e r ef^r(x) denotes the rth order derivative of f(x) with respect to x , is a. n b. 2^n c. 2^(n-1) d. none of these

If f ( x) = Sigma_(r=1)^(n) tan^(-1) ( 1/(x^(2) + ( 2r -1) x + (r^(2) - r + 1)))" , then " | lim_(n to oo) f'(0)| is

If f (n) = sum_(s=1)^n sum_(r=s)^n "^nC_r "^rC_s , then f(3) =

Let f:R to R defined by f(x)=x^(2)+1, forall x in R . Choose the correct answer