Home
Class 12
MATHS
Let f(x)={|x-2|+a^2-6a+9, x < 2 and 5-2x...

Let `f(x)={|x-2|+a^2-6a+9, x < 2 and 5-2x, x >= 2` If `lim_(x->2) [f(x)]` exists the possible values a can take is/are (where [.] represents the grestest integer function)

A

2

B

`5/2`

C

3

D

`7/2`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|8 Videos
  • LIMIT

    VK JAISWAL ENGLISH|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|1 Videos
  • LIMIT

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|6 Videos
  • LOGARITHMS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

If lim_(xto1) (2-x+a[x-1]+b[1+x]) exists, then a and b can take the values (where [.] denotes the greatest integer function)

Prove that lim_(xto2) [x] does not exists, where [.] represents the greatest integer function.

lim_(xrarr0) [(100 tan x sin x)/(x^2)] is (where [.] represents greatest integer function).

Let [.] represent the greatest integer function and f (x)=[tan^2 x] then :

Evaluate lim_(xto2^(+)) ([x-2])/(log(x-2)), where [.] represents the greatest integer function.

Discuss continuity of f(x) =[sin x] -[cos x] at x=pi//2, where [.] represent the greatest integer function .

If f(x)=x((e^(|x|+[x])-2)/(|x|+[x])) then (where [.] represent the greatest integer function)

If f:R->R is defined by f(x)=[x−3]+|x−4| for x in R , then lim_(x->3) f(x) is equal to (where [.] represents the greatest integer function)

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

Evaluate : ("lim")_(xrarr2^+) ([x-2])/("log"(x-2)) , where [.] represents the greatest integer function.