Home
Class 12
MATHS
For the curve sinx+siny=1 lying in first...

For the curve `sinx+siny=1` lying in first quadrant. If `underset(xrarr0)(lim)x^(alpha)(d^(2)y)/(dx^(2))` exists and non-zero than `2alpha=`

A

`1/2`

B

1

C

`(1)/(2sqrt2)`

D

`(1)/(2sqrt3)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VK JAISWAL ENGLISH|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|1 Videos
  • LIMIT

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • LIMIT

    VK JAISWAL ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|6 Videos
  • LOGARITHMS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

For the curve sinx+siny=1 lying in first quadrant. If lim_(xrarr0) x^(alpha)(d^(2)y)/(dx^(2)) exists and non-zero than 2alpha=

lim_(xrarr0) (sin^(2)4x)/(x^(2))= ?

lim_(xrarr0) (6^(x)-3^(x)-2^(x)+1)/(x^(2))=?

lim_(xrarr0) (sin(picos^2x))/(x^2) equals

lim_(xrarr0) (x^(2)-x)/(sinx)

lim_(xrarr0) (e^(x^(2))-cosx)/(x^2) is equal to

lim_( xrarr0) (1-cosx)/(x^(2))

lim_(xrarr0) (sqrt(1-x^(2))-sqrt(1+x^(2)))/(2x^(2))

lim_(xrarr0)(2log(1+x)-log(1+2x))/(x^2) is equal to

The value of lim_(xrarr0)((sinx)/(x))^((1)/(x^2)) , is