Home
Class 12
MATHS
Let 'f' be a fifferentiable real valued ...

Let 'f' be a fifferentiable real valued function satisfying `f (x+2y) =f (x) +f (2y) + 6xy (x+2y) AA x, y in R.` Then `f ' (0), f" (1), f'(2)…..` are in

A

AP

B

GP

C

HP

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given functional equation and find the values of \( f'(0) \), \( f(1) \), and \( f'(2) \). ### Step-by-Step Solution: 1. **Start with the given functional equation**: \[ f(x + 2y) = f(x) + f(2y) + 6xy(x + 2y) \] for all \( x, y \in \mathbb{R} \). 2. **Substitute \( a = x \) and \( b = 2y \)**: Rewrite the equation as: \[ f(a + b) = f(a) + f(b) + 3ab(a + b) \] This resembles the form of the identity for \( a^3 + b^3 \). 3. **Recognize the form of the equation**: The equation \( f(a + b) = f(a) + f(b) + 3ab(a + b) \) suggests that \( f(x) \) could be a cubic function. We can assume: \[ f(x) = x^3 \] because the cubic polynomial satisfies the form of the equation. 4. **Verify the assumption**: If \( f(x) = x^3 \), then: \[ f(x + 2y) = (x + 2y)^3 = x^3 + 3x^2(2y) + 3x(2y)^2 + (2y)^3 \] Expanding this gives: \[ = x^3 + 6xy + 12y^2 + 8y^3 \] Now, calculate \( f(x) + f(2y) + 6xy(x + 2y) \): \[ f(x) = x^3, \quad f(2y) = (2y)^3 = 8y^3 \] Thus: \[ f(x) + f(2y) + 6xy(x + 2y) = x^3 + 8y^3 + 6xy(x + 2y) \] Simplifying \( 6xy(x + 2y) \): \[ = 6xyx + 12xy^2 = 6x^2y + 12xy^2 \] Adding these gives: \[ = x^3 + 8y^3 + 6x^2y + 12xy^2 \] This matches the expansion of \( (x + 2y)^3 \). 5. **Find derivatives**: Now, we calculate: - \( f'(x) = 3x^2 \) - \( f'(0) = 3(0)^2 = 0 \) - \( f(1) = 1^3 = 1 \) - \( f'(2) = 3(2)^2 = 12 \) 6. **Collect the values**: We have: - \( f'(0) = 0 \) - \( f(1) = 1 \) - \( f'(2) = 12 \) 7. **Check the type of progression**: - The values are \( 0, 1, 12 \). - For Arithmetic Progression (AP): The difference between \( 0 \) and \( 1 \) is \( 1 \), and between \( 1 \) and \( 12 \) is \( 11 \). Since the differences are not equal, they are not in AP. - For Geometric Progression (GP): Since one of the terms is \( 0 \), they cannot be in GP. - For Harmonic Progression (HP): We check if \( b = \frac{2ac}{a+c} \). Here, \( a = 0, b = 1, c = 12 \): \[ 1 \neq \frac{2(0)(12)}{0 + 12} = 0 \] Thus, they are not in HP either. 8. **Conclusion**: Since \( 0, 1, 12 \) are not in AP, GP, or HP, we conclude that they do not lie in any standard progression. ### Final Answer: None of these (Option D).
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|35 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|29 Videos
  • COMPOUND ANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VK JAISWAL ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

If f(x+y) = f(x) + f(y) + |x|y+xy^(2),AA x, y in R and f'(0) = 0 , then

A function f(x) satisfies the relation f(x+y) = f(x) + f(y) + xy(x+y), AA x, y in R . If f'(0) = - 1, then

If a real valued function f(x) satisfies the equation f(x +y)=f(x)+f (y) for all x,y in R then f(x) is

Let a real valued function f satisfy f(x + y) = f(x)f(y)AA x, y in R and f(0)!=0 Then g(x)=f(x)/(1+[f(x)]^2) is

Let f be a real valued function satisfying f(x+y)=f(x)f(y) for all x, y in R such that f(1)=2 . Then , sum_(k=1)^(n) f(k)=

Let f be a real valued function satisfying f(x+y)=f(x)+f(y) for all x, y in R and f(1)=2 . Then sum_(k=1)^(n)f(k)=

Let f(x) be a differentiable function satisfying f(y)f(x/y)=f(x) AA , x,y in R, y!=0 and f(1)!=0 , f'(1)=3 then

Let be a real function satisfying f(x)+f(y)=f((x+y)/(1-xy)) for all x ,y in R and xy ne1 . Then f(x) is

Determine the function satisfying f^2(x+y)=f^2(x)+f^2(y)AAx ,y in Rdot

Determine the function satisfying f^2(x+y)=f^2(x)+f^2(y)AAx ,y in Rdot

VK JAISWAL ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. Let 'f' be a fifferentiable real valued function satisfying f (x+2y) =...

    Text Solution

    |

  2. Let f (x)= {{:(ax (x-1)+b,,, x lt 1),( x+2,,, 1 le x le 3),(px ^(2) +q...

    Text Solution

    |

  3. If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/...

    Text Solution

    |

  4. If y ^(2) =4ax, then (d^(2) y)/(dx ^(2))=(ka ^(2))/( y ^(2)), where k ...

    Text Solution

    |

  5. The number of values of x , x ∈ [-2,3] where f (x) =[x ^(2)] sin (pix)...

    Text Solution

    |

  6. If f (x) is continous and differentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  7. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  8. Consider f(x) =x^(2)+ax+3 and g(x) =x+band F(x) = lim( n to oo) (f...

    Text Solution

    |

  9. Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f...

    Text Solution

    |

  10. If f (x) +2 f (1-x) =x ^(2) +2 AA x in R and f (x) is a differentiable...

    Text Solution

    |

  11. Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number o...

    Text Solution

    |

  12. If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))...

    Text Solution

    |

  13. f (x) =a cos (pix)+b, f'((1)/(2))=pi and int (1//2)^(3//2) f (x) dx =2...

    Text Solution

    |

  14. Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1...

    Text Solution

    |

  15. Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ...

    Text Solution

    |

  16. If y=3^(2 sin ^(-1)) then |((x ^(2) -1) y^('') +xy')/(y)| is equal to

    Text Solution

    |

  17. Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)...

    Text Solution

    |

  18. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  19. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |

  20. Let f (x) = x tan ^(-1) (x^(2)) + x^(4) Let f ^(k) (x) denotes k ^(th)...

    Text Solution

    |

  21. If x = cos theta and y = sin^(3) theta, then |(yd ^(2)y)/(dx ^(2))+((d...

    Text Solution

    |