Home
Class 12
MATHS
If f (x) is a thrice differentiable func...

If `f (x)` is a thrice differentiable function such that `lim _(xto0)(f (4x) -3 f(3x) +3f (2x) -f (x))/(x ^(3))=12` then the vlaue of `f '(0)` equais to :

A

0

B

1

C

12

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( f'(0) \) given the limit: \[ \lim_{x \to 0} \frac{f(4x) - 3f(3x) + 3f(2x) - f(x)}{x^3} = 12 \] ### Step-by-Step Solution: 1. **Understanding the Limit**: Since the limit evaluates to a constant (12) and the denominator is \( x^3 \), the numerator must also be a polynomial of degree 3. This means that \( f(x) \) must be a polynomial of degree at least 3. 2. **Assuming a Form for \( f(x) \)**: Let's assume that \( f(x) \) can be expressed as: \[ f(x) = n x^3 \] where \( n \) is a constant. 3. **Substituting into the Limit**: We substitute \( f(x) \) into the limit: \[ f(4x) = n(4x)^3 = 64nx^3 \] \[ f(3x) = n(3x)^3 = 27nx^3 \] \[ f(2x) = n(2x)^3 = 8nx^3 \] \[ f(x) = nx^3 \] Now substituting these into the limit expression: \[ \lim_{x \to 0} \frac{64nx^3 - 3(27nx^3) + 3(8nx^3) - nx^3}{x^3} \] 4. **Simplifying the Expression**: Simplifying the numerator: \[ 64nx^3 - 81nx^3 + 24nx^3 - nx^3 = (64n - 81n + 24n - n)x^3 = (6n)x^3 \] Therefore, the limit becomes: \[ \lim_{x \to 0} \frac{6nx^3}{x^3} = 6n \] 5. **Setting the Limit Equal to 12**: We set the limit equal to 12: \[ 6n = 12 \] Solving for \( n \): \[ n = 2 \] 6. **Finding \( f(x) \)**: Thus, we have: \[ f(x) = 2x^3 \] 7. **Finding the Derivative**: Now we find the derivative \( f'(x) \): \[ f'(x) = \frac{d}{dx}(2x^3) = 6x^2 \] 8. **Evaluating \( f'(0) \)**: Finally, we evaluate \( f'(0) \): \[ f'(0) = 6(0)^2 = 0 \] ### Final Answer: The value of \( f'(0) \) is \( \boxed{0} \).
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|35 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|29 Videos
  • COMPOUND ANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VK JAISWAL ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

Let f(x) be a twice-differentiable function and f''(0)=2. Then evaluate lim_(xto0) (2f(x)-3f(2x)+f(4x))/(x^(2)).

Let f(x) be a twice-differentiable function and f"(0)=2. The evaluate: ("lim")_(xvec0)(2f(x)-3f(2x)+f(4x))/(x^2)

If f(x) is a differentiable function satisfying |f'(x)|le4AA x in [0, 4] and f(0)=0 , then

Let f(x) be continuous and differentiable function for all reals and f(x + y) = f(x) - 3xy + ff(y). If lim_(h to 0)(f(h))/(h) = 7 , then the value of f'(x) is

Let f be differentiable function such that f'(x)=7-3/4(f(x))/x,(xgt0) and f(1)ne4" Then " lim_(xto0^+) xf(1/x)

Let f be a differentiable function such that f'(x) = f(x) + int_(0)^(2) f(x) dx and f(0) = (4-e^(2))/(3) . Find f(x) .

If f(x) is a differentiable real valued function satisfying f''(x)-3f'(x) gt 3 AA x ge 0 and f'(0)=-1, then f(x)+x AA x gt 0 is

If f is an even function, then prove that lim_(x->0^-) f(x) = lim_(x->0^+) f(x)

If f(x) is a real valued function such that f(x + 6) - f(x + 3) + f(x) = 0, AA x in R , then period of f(x) is

Let f(x) be a function such that ("lim")_(xvec0)(f(x))/x=1 and ("lim")_(xvec0)(x(1+acosx)-bsinx)/((f(x))^3)=1 , then b-3a is equal to

VK JAISWAL ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. If f (x) is a thrice differentiable function such that lim (xto0)(f (4...

    Text Solution

    |

  2. Let f (x)= {{:(ax (x-1)+b,,, x lt 1),( x+2,,, 1 le x le 3),(px ^(2) +q...

    Text Solution

    |

  3. If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/...

    Text Solution

    |

  4. If y ^(2) =4ax, then (d^(2) y)/(dx ^(2))=(ka ^(2))/( y ^(2)), where k ...

    Text Solution

    |

  5. The number of values of x , x ∈ [-2,3] where f (x) =[x ^(2)] sin (pix)...

    Text Solution

    |

  6. If f (x) is continous and differentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  7. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  8. Consider f(x) =x^(2)+ax+3 and g(x) =x+band F(x) = lim( n to oo) (f...

    Text Solution

    |

  9. Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f...

    Text Solution

    |

  10. If f (x) +2 f (1-x) =x ^(2) +2 AA x in R and f (x) is a differentiable...

    Text Solution

    |

  11. Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number o...

    Text Solution

    |

  12. If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))...

    Text Solution

    |

  13. f (x) =a cos (pix)+b, f'((1)/(2))=pi and int (1//2)^(3//2) f (x) dx =2...

    Text Solution

    |

  14. Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1...

    Text Solution

    |

  15. Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ...

    Text Solution

    |

  16. If y=3^(2 sin ^(-1)) then |((x ^(2) -1) y^('') +xy')/(y)| is equal to

    Text Solution

    |

  17. Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)...

    Text Solution

    |

  18. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  19. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |

  20. Let f (x) = x tan ^(-1) (x^(2)) + x^(4) Let f ^(k) (x) denotes k ^(th)...

    Text Solution

    |

  21. If x = cos theta and y = sin^(3) theta, then |(yd ^(2)y)/(dx ^(2))+((d...

    Text Solution

    |