Home
Class 12
MATHS
If f (x) =|sin x-|cos x ||, then f '((7p...

If `f (x) =|sin x-|cos x ||,` then `f '((7pi)/(6))=`

A

`(sqrt3+1)/(2)`

B

`(1-sqrt3)/(2)`

C

`(sqrt3-1)/(2)`

D

`(-1-sqrt3)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f' \left( \frac{7\pi}{6} \right) \) for the function \( f(x) = |\sin x - |\cos x|| \), we will go through the following steps: ### Step 1: Evaluate \( |\cos x| \) near \( x = \frac{7\pi}{6} \) First, we need to evaluate \( |\cos x| \) at \( x = \frac{7\pi}{6} \). \[ \cos\left(\frac{7\pi}{6}\right) = -\frac{\sqrt{3}}{2} \] Thus, \[ |\cos\left(\frac{7\pi}{6}\right)| = \frac{\sqrt{3}}{2} \] ### Step 2: Substitute into \( f(x) \) Now, we can substitute \( |\cos x| \) into the function \( f(x) \): \[ f(x) = |\sin x - |\cos x|| = |\sin x + \frac{\sqrt{3}}{2}| \] ### Step 3: Evaluate \( \sin x \) near \( x = \frac{7\pi}{6} \) Next, we evaluate \( \sin x \) at \( x = \frac{7\pi}{6} \): \[ \sin\left(\frac{7\pi}{6}\right) = -\frac{1}{2} \] ### Step 4: Substitute into \( f(x) \) Now substituting \( \sin\left(\frac{7\pi}{6}\right) \) into \( f(x) \): \[ f\left(\frac{7\pi}{6}\right) = \left| -\frac{1}{2} + \frac{\sqrt{3}}{2} \right| = \left| \frac{\sqrt{3}}{2} - \frac{1}{2} \right| = \left| \frac{\sqrt{3} - 1}{2} \right| \] Since \( \sqrt{3} > 1 \), we have: \[ f\left(\frac{7\pi}{6}\right) = \frac{\sqrt{3} - 1}{2} \] ### Step 5: Differentiate \( f(x) \) Now we differentiate \( f(x) \): \[ f'(x) = \frac{d}{dx} \left( |\sin x + \frac{\sqrt{3}}{2}| \right) \] Since \( \sin x + \frac{\sqrt{3}}{2} \) is negative in the neighborhood of \( x = \frac{7\pi}{6} \), we have: \[ f(x) = -\left( \sin x + \frac{\sqrt{3}}{2} \right) \] Thus, differentiating gives: \[ f'(x) = -\cos x \] ### Step 6: Evaluate \( f' \left( \frac{7\pi}{6} \right) \) Now we can evaluate \( f' \left( \frac{7\pi}{6} \right) \): \[ f' \left( \frac{7\pi}{6} \right) = -\cos\left(\frac{7\pi}{6}\right) = -\left(-\frac{\sqrt{3}}{2}\right) = \frac{\sqrt{3}}{2} \] ### Step 7: Final Calculation Now we need to calculate: \[ f' \left( \frac{7\pi}{6} \right) = \sin\left(\frac{7\pi}{6}\right) - \cos\left(\frac{7\pi}{6}\right) \] Substituting the values: \[ f' \left( \frac{7\pi}{6} \right) = -\frac{1}{2} - \left(-\frac{\sqrt{3}}{2}\right) = -\frac{1}{2} + \frac{\sqrt{3}}{2} = \frac{\sqrt{3} - 1}{2} \] Thus, the final answer is: \[ f' \left( \frac{7\pi}{6} \right) = \frac{\sqrt{3} - 1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|35 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|29 Videos
  • COMPOUND ANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VK JAISWAL ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

If f (x) =2x, g (x) =3 sin x -x cos x, then for x in (0, (pi)/(2)):

If f(x)=|sinx-|cosx||, then the value of f^(')(x) at x=(7pi)/6 is

If f(x)=|sinx-|cosx||, then the value of f^(')(x) at x=(7pi)/6 is

If f(x)=sin^6x+cos^6x , then range of f(x) is

If f(x)=2(1+sin x), then evaluate f((pi)/(2)) .

If f(x) =4x^2 and g(x) =f(sin x)+f(cos x), then g (23^(@)) is

If f(x) = |cos x| + |sin x| , then dy/dx at x = (2pi)/3 is equal to

If f(x) = |cos x| + |sin x| , then dy/dx at x = (2pi)/3 is equal to

If f(x)=sin x + cos^(2)x , then prove that: f(x)=f(pi-x)

If overset(x)underset(e )int t f(t)dt=sin x-x cos x-(x^(2))/(2) for all x in R-{0} , then the value of f((pi)/(6)) will be equal to

VK JAISWAL ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. If f (x) =|sin x-|cos x ||, then f '((7pi)/(6))=

    Text Solution

    |

  2. Let f (x)= {{:(ax (x-1)+b,,, x lt 1),( x+2,,, 1 le x le 3),(px ^(2) +q...

    Text Solution

    |

  3. If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/...

    Text Solution

    |

  4. If y ^(2) =4ax, then (d^(2) y)/(dx ^(2))=(ka ^(2))/( y ^(2)), where k ...

    Text Solution

    |

  5. The number of values of x , x ∈ [-2,3] where f (x) =[x ^(2)] sin (pix)...

    Text Solution

    |

  6. If f (x) is continous and differentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  7. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  8. Consider f(x) =x^(2)+ax+3 and g(x) =x+band F(x) = lim( n to oo) (f...

    Text Solution

    |

  9. Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f...

    Text Solution

    |

  10. If f (x) +2 f (1-x) =x ^(2) +2 AA x in R and f (x) is a differentiable...

    Text Solution

    |

  11. Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number o...

    Text Solution

    |

  12. If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))...

    Text Solution

    |

  13. f (x) =a cos (pix)+b, f'((1)/(2))=pi and int (1//2)^(3//2) f (x) dx =2...

    Text Solution

    |

  14. Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1...

    Text Solution

    |

  15. Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ...

    Text Solution

    |

  16. If y=3^(2 sin ^(-1)) then |((x ^(2) -1) y^('') +xy')/(y)| is equal to

    Text Solution

    |

  17. Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)...

    Text Solution

    |

  18. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  19. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |

  20. Let f (x) = x tan ^(-1) (x^(2)) + x^(4) Let f ^(k) (x) denotes k ^(th)...

    Text Solution

    |

  21. If x = cos theta and y = sin^(3) theta, then |(yd ^(2)y)/(dx ^(2))+((d...

    Text Solution

    |