Home
Class 12
MATHS
If 2 sin x. cos y=1, then (d ^(2)y)/(dx...

If `2 sin x. cos y=1, ` then `(d ^(2)y)/(dx ^(2)) at ((pi)/(4), (pi)/(4))` is …….

A

`-4`

B

`-2`

C

`-6`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the second derivative of \( y \) with respect to \( x \) at the point \( \left( \frac{\pi}{4}, \frac{\pi}{4} \right) \) given the equation: \[ 2 \sin x \cos y = 1 \] ### Step 1: Simplify the equation We start by simplifying the given equation: \[ \sin x \cos y = \frac{1}{2} \] ### Step 2: Differentiate both sides Next, we differentiate both sides with respect to \( x \). Using the product rule on the left side, we have: \[ \frac{d}{dx}(\sin x \cos y) = \cos x \cos y - \sin x \sin y \frac{dy}{dx} \] The right side is a constant, so its derivative is 0: \[ \cos x \cos y - \sin x \sin y \frac{dy}{dx} = 0 \] ### Step 3: Solve for \( \frac{dy}{dx} \) Rearranging the equation gives: \[ \sin x \sin y \frac{dy}{dx} = \cos x \cos y \] Thus, \[ \frac{dy}{dx} = \frac{\cos x \cos y}{\sin x \sin y} \] This can be rewritten using cotangent: \[ \frac{dy}{dx} = \cot x \cot y \] ### Step 4: Evaluate \( \frac{dy}{dx} \) at \( \left( \frac{\pi}{4}, \frac{\pi}{4} \right) \) Now we substitute \( x = \frac{\pi}{4} \) and \( y = \frac{\pi}{4} \): \[ \frac{dy}{dx} \bigg|_{\left( \frac{\pi}{4}, \frac{\pi}{4} \right)} = \cot \frac{\pi}{4} \cdot \cot \frac{\pi}{4} = 1 \cdot 1 = 1 \] ### Step 5: Differentiate \( \frac{dy}{dx} \) to find \( \frac{d^2y}{dx^2} \) Next, we differentiate \( \frac{dy}{dx} \) again to find \( \frac{d^2y}{dx^2} \): \[ \frac{d^2y}{dx^2} = \frac{d}{dx}(\cot x \cot y) \] Using the product rule: \[ \frac{d^2y}{dx^2} = -\csc^2 x \cot y + \cot x (-\csc^2 y \frac{dy}{dx}) \] Substituting \( \frac{dy}{dx} = 1 \): \[ \frac{d^2y}{dx^2} = -\csc^2 x \cot y - \cot x \csc^2 y \] ### Step 6: Evaluate \( \frac{d^2y}{dx^2} \) at \( \left( \frac{\pi}{4}, \frac{\pi}{4} \right) \) Now we substitute \( x = \frac{\pi}{4} \) and \( y = \frac{\pi}{4} \): \[ \frac{d^2y}{dx^2} \bigg|_{\left( \frac{\pi}{4}, \frac{\pi}{4} \right)} = -\csc^2 \frac{\pi}{4} \cdot 1 - 1 \cdot \csc^2 \frac{\pi}{4} \] Since \( \csc \frac{\pi}{4} = \sqrt{2} \): \[ \frac{d^2y}{dx^2} = -2 \cdot 2 = -4 \] ### Final Answer Thus, the value of \( \frac{d^2y}{dx^2} \) at \( \left( \frac{\pi}{4}, \frac{\pi}{4} \right) \) is: \[ \boxed{-4} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|35 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|29 Videos
  • COMPOUND ANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VK JAISWAL ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

If ( sin x) (cos y) = 1//2, then d^(2)y//dx^(2) at (pi//4, pi//4) is

If tan x cot y= sec alpha where alpha is constant and alpha in (-(pi)/(2), (pi)/(2))then (d ^(2)y)/(dx ^(2))at ((pi)/(4), (pi)/(4)) equal to:

If (sinx)(cosy)=1/2, then (d^2y)/(dx^2) at (pi/4,pi/4) is (a) -4 (b) -2 (c) -6 (d) 0

If Y = ((2 - 3 cos x)/("sin" x)) , then (dy)/(dx) at x = (pi)/(4) is

If x=sin theta and y=cos^(3) then 2y(d^(2)y)/(dx^(2))+4((dy)/(dx))^(2) is

If x=a(cos 2 theta+2 theta sin 2 theta) " and" y=a(sin 2 theta - 2 theta cos 2 theta) , find (d^(2)y)/(dx^(2)) " at" theta =(pi)/(8) .

if y = sin 2x , " then " (d^(6)y)/(dx^(6)) " at" x = pi/2 is equal to

If y = log ( sqrt( sin x - cos x)) , that prove that (dy)/(dx) = - (1)/(2) tan ((pi)/( 4) + x)

If y = tan ^(-1) (sec x + tan x) , " find " (d^(2) y)/( dx^(2)) at x = (pi)/(4)

If x =2 cos theta - cos 2 theta y = 2 sin theta - sin 2 theta Find (d^(2)y)/(dx^(2)) at theta = pi/2

VK JAISWAL ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. If 2 sin x. cos y=1, then (d ^(2)y)/(dx ^(2)) at ((pi)/(4), (pi)/(4))...

    Text Solution

    |

  2. Let f (x)= {{:(ax (x-1)+b,,, x lt 1),( x+2,,, 1 le x le 3),(px ^(2) +q...

    Text Solution

    |

  3. If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/...

    Text Solution

    |

  4. If y ^(2) =4ax, then (d^(2) y)/(dx ^(2))=(ka ^(2))/( y ^(2)), where k ...

    Text Solution

    |

  5. The number of values of x , x ∈ [-2,3] where f (x) =[x ^(2)] sin (pix)...

    Text Solution

    |

  6. If f (x) is continous and differentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  7. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  8. Consider f(x) =x^(2)+ax+3 and g(x) =x+band F(x) = lim( n to oo) (f...

    Text Solution

    |

  9. Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f...

    Text Solution

    |

  10. If f (x) +2 f (1-x) =x ^(2) +2 AA x in R and f (x) is a differentiable...

    Text Solution

    |

  11. Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number o...

    Text Solution

    |

  12. If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))...

    Text Solution

    |

  13. f (x) =a cos (pix)+b, f'((1)/(2))=pi and int (1//2)^(3//2) f (x) dx =2...

    Text Solution

    |

  14. Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1...

    Text Solution

    |

  15. Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ...

    Text Solution

    |

  16. If y=3^(2 sin ^(-1)) then |((x ^(2) -1) y^('') +xy')/(y)| is equal to

    Text Solution

    |

  17. Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)...

    Text Solution

    |

  18. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  19. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |

  20. Let f (x) = x tan ^(-1) (x^(2)) + x^(4) Let f ^(k) (x) denotes k ^(th)...

    Text Solution

    |

  21. If x = cos theta and y = sin^(3) theta, then |(yd ^(2)y)/(dx ^(2))+((d...

    Text Solution

    |