Home
Class 12
MATHS
f is a differentiable function such that...

f is a differentiable function such that `x=f(t^2),y=f(t^3)` and `f'(1)!=0` if `((d^2y)/(dx^2))_(t=1)`=

A

`3/4 ((f''(1)+f (1))/((f' (1))^(2)))`

B

`3/4 ((f (1). f '(1) -f'(1))/(f (f'(1))^(2)))`

C

`4/3 (f'(1))/((f'(1))^(2))`

D

`4/3((f '(1)f''(1) -f' (1))/((f'(1))^(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the second derivative of \( y \) with respect to \( x \) at \( t = 1 \) given that \( x = f(t^2) \) and \( y = f(t^3) \). We will use the chain rule and implicit differentiation. ### Step-by-Step Solution: 1. **Differentiate \( x \) with respect to \( t \)**: \[ x = f(t^2) \implies \frac{dx}{dt} = f'(t^2) \cdot \frac{d(t^2)}{dt} = f'(t^2) \cdot 2t \] - **Hint**: Use the chain rule for differentiation. 2. **Differentiate \( y \) with respect to \( t \)**: \[ y = f(t^3) \implies \frac{dy}{dt} = f'(t^3) \cdot \frac{d(t^3)}{dt} = f'(t^3) \cdot 3t^2 \] - **Hint**: Again, apply the chain rule for differentiation. 3. **Find \( \frac{dy}{dx} \)**: Using the relationship \( \frac{dy}{dx} = \frac{dy/dt}{dx/dt} \): \[ \frac{dy}{dx} = \frac{f'(t^3) \cdot 3t^2}{f'(t^2) \cdot 2t} = \frac{3t f'(t^3)}{2f'(t^2)} \] - **Hint**: Remember to simplify the fractions carefully. 4. **Differentiate \( \frac{dy}{dx} \) with respect to \( t \)**: We will use the quotient rule: \[ \frac{d^2y}{dx^2} = \frac{d}{dt}\left(\frac{dy}{dx}\right) \cdot \frac{1}{\frac{dx}{dt}} \] Let \( u = 3t f'(t^3) \) and \( v = 2f'(t^2) \): \[ \frac{d^2y}{dx^2} = \frac{v \frac{du}{dt} - u \frac{dv}{dt}}{v^2} \cdot \frac{1}{\frac{dx}{dt}} \] - **Hint**: Apply the product rule and quotient rule carefully. 5. **Evaluate \( \frac{d^2y}{dx^2} \) at \( t = 1 \)**: Substitute \( t = 1 \): \[ \frac{d^2y}{dx^2}\bigg|_{t=1} = \frac{2f'(1) \left(3f'(1) + 3f''(1)\right) - 3f'(1) \cdot 2f''(1)}{(2f'(1))^2} \] Simplifying this expression gives: \[ = \frac{3f'(1) + 3f''(1) - 2f''(1)}{2f'(1)} = \frac{3f'(1) + f''(1)}{2f'(1)} \] - **Hint**: Substitute and simplify carefully. 6. **Final Result**: The value of \( \frac{d^2y}{dx^2} \) at \( t = 1 \) is: \[ \frac{3f'(1) + f''(1)}{2f'(1)} \] ### Final Answer: \[ \frac{3f'(1) + f''(1)}{2f'(1)} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|35 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|29 Videos
  • COMPOUND ANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VK JAISWAL ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

If f:RrarrR,f(x) is a differentiable function such that (f(x))^(2)=e^(2)+int_(0)^(x)(f(t)^(2)+(f'(t))^(2))dtAAx inR . The values f(1) can take is/are

if f(x) is a differential function such that f(x)=int_(0)^(x)(1+2xf(t))dt&f(1)=e , then Q. int_(0)^(1)f(x)dx=

If f(x) is differentiable function such that int_0^xf(t)dt=((f(x))^2)/2 for all x and f(2)!=0, then value of f ' (2) is a. 3 b. 1 c. 2 d. -1 e. -2

Let f:RtoR be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . y=f(x) is

Let f(x) be a differentiable function such that int_(t)^(t^(2))xf(x)dx=(4)/(3)t^(3)-(4t)/(3)AA t ge0 , then f(1) is equal to

Let f(x) be a differentiable function such that f(x)=x^2 +int_0^x e^-t f(x-t) dt then int_0^1 f(x) dx=

Let f(x) be a continuous and differentiable function such that f(x)=int_0^xsin(t^2-t+x)dt Then prove that f^('')(x)+f(x)=cosx^2+2xsinx^2

Let f(x) be a differentiable function satisfying f(y)f(x/y)=f(x) AA , x,y in R, y!=0 and f(1)!=0 , f'(1)=3 then

If f(x) is differentiable function in the interval (0,oo) such that f(1) = 1 and lim_(trarrx) (t^(2)f(x)-x^(2)(t))/(t-x)=1 for each x gt 0 , then f((3)/(2)) is equal tv

Let f(x) be differentiable on the interval (0,oo) such that f(1)=1 and lim_(t->x) (t^2f(x)-x^2f(t))/(t-x)=1 for each x>0 . Then f(x)=

VK JAISWAL ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. f is a differentiable function such that x=f(t^2),y=f(t^3) and f'(1)!=...

    Text Solution

    |

  2. Let f (x)= {{:(ax (x-1)+b,,, x lt 1),( x+2,,, 1 le x le 3),(px ^(2) +q...

    Text Solution

    |

  3. If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/...

    Text Solution

    |

  4. If y ^(2) =4ax, then (d^(2) y)/(dx ^(2))=(ka ^(2))/( y ^(2)), where k ...

    Text Solution

    |

  5. The number of values of x , x ∈ [-2,3] where f (x) =[x ^(2)] sin (pix)...

    Text Solution

    |

  6. If f (x) is continous and differentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  7. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  8. Consider f(x) =x^(2)+ax+3 and g(x) =x+band F(x) = lim( n to oo) (f...

    Text Solution

    |

  9. Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f...

    Text Solution

    |

  10. If f (x) +2 f (1-x) =x ^(2) +2 AA x in R and f (x) is a differentiable...

    Text Solution

    |

  11. Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number o...

    Text Solution

    |

  12. If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))...

    Text Solution

    |

  13. f (x) =a cos (pix)+b, f'((1)/(2))=pi and int (1//2)^(3//2) f (x) dx =2...

    Text Solution

    |

  14. Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1...

    Text Solution

    |

  15. Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ...

    Text Solution

    |

  16. If y=3^(2 sin ^(-1)) then |((x ^(2) -1) y^('') +xy')/(y)| is equal to

    Text Solution

    |

  17. Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)...

    Text Solution

    |

  18. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  19. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |

  20. Let f (x) = x tan ^(-1) (x^(2)) + x^(4) Let f ^(k) (x) denotes k ^(th)...

    Text Solution

    |

  21. If x = cos theta and y = sin^(3) theta, then |(yd ^(2)y)/(dx ^(2))+((d...

    Text Solution

    |