Home
Class 12
MATHS
If y= tan ^(-1) ((x)/(1+ sqrt(1- x ^(2))...

If `y= tan ^(-1) ((x)/(1+ sqrt(1- x ^(2)))), |x|le 1, `then `(dy)/(dx) at ((1)/(2))` is:

A

`(1)/(sqrt3)`

B

3

C

`(sqrt3)/(2)`

D

`(2)/(sqrt3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the function \(y = \tan^{-1}\left(\frac{x}{1 + \sqrt{1 - x^2}}\right)\) at \(x = \frac{1}{2}\), we can follow these steps: ### Step 1: Substitute \(x\) with \(\sin \theta\) Let \(x = \sin \theta\). Then, we have: \[ y = \tan^{-1}\left(\frac{\sin \theta}{1 + \sqrt{1 - \sin^2 \theta}}\right) \] ### Step 2: Simplify the expression Using the identity \(\sqrt{1 - \sin^2 \theta} = \cos \theta\), we can rewrite the expression: \[ y = \tan^{-1}\left(\frac{\sin \theta}{1 + \cos \theta}\right) \] ### Step 3: Further simplify the fraction Using the identity \(1 + \cos \theta = 2 \cos^2\left(\frac{\theta}{2}\right)\) and \(\sin \theta = 2 \sin\left(\frac{\theta}{2}\right) \cos\left(\frac{\theta}{2}\right)\), we can rewrite \(y\) as: \[ y = \tan^{-1}\left(\frac{2 \sin\left(\frac{\theta}{2}\right) \cos\left(\frac{\theta}{2}\right)}{2 \cos^2\left(\frac{\theta}{2}\right)}\right) = \tan^{-1}\left(\tan\left(\frac{\theta}{2}\right)\right) \] ### Step 4: Simplify using the properties of \(\tan^{-1}\) Since \(\tan^{-1}(\tan(x)) = x\) for \(x\) in the principal range, we have: \[ y = \frac{\theta}{2} \] ### Step 5: Substitute back for \(\theta\) Recall that \(\theta = \sin^{-1}(x)\), so: \[ y = \frac{1}{2} \sin^{-1}(x) \] ### Step 6: Differentiate \(y\) with respect to \(x\) Now, we differentiate \(y\): \[ \frac{dy}{dx} = \frac{1}{2} \cdot \frac{1}{\sqrt{1 - x^2}} \] ### Step 7: Evaluate \(\frac{dy}{dx}\) at \(x = \frac{1}{2}\) Substituting \(x = \frac{1}{2}\): \[ \frac{dy}{dx} = \frac{1}{2} \cdot \frac{1}{\sqrt{1 - \left(\frac{1}{2}\right)^2}} = \frac{1}{2} \cdot \frac{1}{\sqrt{1 - \frac{1}{4}}} = \frac{1}{2} \cdot \frac{1}{\sqrt{\frac{3}{4}}} = \frac{1}{2} \cdot \frac{2}{\sqrt{3}} = \frac{1}{\sqrt{3}} \] ### Final Answer Thus, \(\frac{dy}{dx}\) at \(x = \frac{1}{2}\) is: \[ \frac{1}{\sqrt{3}} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|35 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|29 Videos
  • COMPOUND ANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VK JAISWAL ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

If y= tan ^-1 ((x)/sqrt(a^2-x^2)) then dy/dx =?

If y = tan^(-1)( sqrt((x+1)/(x-1))) " for " |x| gt 1 " then " (dy)/(dx) =

If y = tan ^-1[x/(1+sqrt(1-x^2))] "then find" dy/dx

If y= "tan"^(-1) (2x)/(1-x^(2)) , prove that (dy)/(dx)= (2)/(1 + x^(2))

If y=sqrt(x)+(1)/(sqrt(x)) , then (dy)/(dx) at x=1 is

If y=tan^(-1)((1-x)/(1+x)) , find (dy)/(dx) .

If x=sqrt(1-y^2) , then (dy)/(dx)=

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y) , then (dy)/(dx) equals

If y=cos^(-1){xsqrt(1-x)+sqrt(x)sqrt(1-x^2)} and 0

If y=sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^2]) and 0

VK JAISWAL ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. If y= tan ^(-1) ((x)/(1+ sqrt(1- x ^(2)))), |x|le 1, then (dy)/(dx) at...

    Text Solution

    |

  2. Let f (x)= {{:(ax (x-1)+b,,, x lt 1),( x+2,,, 1 le x le 3),(px ^(2) +q...

    Text Solution

    |

  3. If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/...

    Text Solution

    |

  4. If y ^(2) =4ax, then (d^(2) y)/(dx ^(2))=(ka ^(2))/( y ^(2)), where k ...

    Text Solution

    |

  5. The number of values of x , x ∈ [-2,3] where f (x) =[x ^(2)] sin (pix)...

    Text Solution

    |

  6. If f (x) is continous and differentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  7. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  8. Consider f(x) =x^(2)+ax+3 and g(x) =x+band F(x) = lim( n to oo) (f...

    Text Solution

    |

  9. Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f...

    Text Solution

    |

  10. If f (x) +2 f (1-x) =x ^(2) +2 AA x in R and f (x) is a differentiable...

    Text Solution

    |

  11. Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number o...

    Text Solution

    |

  12. If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))...

    Text Solution

    |

  13. f (x) =a cos (pix)+b, f'((1)/(2))=pi and int (1//2)^(3//2) f (x) dx =2...

    Text Solution

    |

  14. Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1...

    Text Solution

    |

  15. Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ...

    Text Solution

    |

  16. If y=3^(2 sin ^(-1)) then |((x ^(2) -1) y^('') +xy')/(y)| is equal to

    Text Solution

    |

  17. Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)...

    Text Solution

    |

  18. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  19. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |

  20. Let f (x) = x tan ^(-1) (x^(2)) + x^(4) Let f ^(k) (x) denotes k ^(th)...

    Text Solution

    |

  21. If x = cos theta and y = sin^(3) theta, then |(yd ^(2)y)/(dx ^(2))+((d...

    Text Solution

    |