Home
Class 12
MATHS
If f(x) is derivable at x=2 such that f(...

If `f(x)` is derivable at `x=2` such that `f(2)=2` and `f'(2)=4 `, then the value of `lim_(h rarr0)(1)/(h^(2))(ln f(2+h^(2))-ln f(2-h^(2)))` is equal to

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{h \to 0} \frac{1}{h^2} \left( \ln f(2+h^2) - \ln f(2-h^2) \right), \] we can start by using the properties of logarithms. ### Step 1: Rewrite the limit using properties of logarithms Using the property of logarithms that states \(\ln a - \ln b = \ln \left( \frac{a}{b} \right)\), we can rewrite the limit as: \[ \lim_{h \to 0} \frac{1}{h^2} \ln \left( \frac{f(2+h^2)}{f(2-h^2)} \right). \] ### Step 2: Apply L'Hôpital's Rule As \(h\) approaches \(0\), both \(f(2+h^2)\) and \(f(2-h^2)\) approach \(f(2)\), which is \(2\). Therefore, the limit takes the indeterminate form \(\frac{0}{0}\). We can apply L'Hôpital's Rule, which states that if the limit results in \(\frac{0}{0}\), we can differentiate the numerator and the denominator. ### Step 3: Differentiate the numerator and the denominator We differentiate the numerator and the denominator with respect to \(h\): - The derivative of the numerator \(\ln \left( \frac{f(2+h^2)}{f(2-h^2)} \right)\) using the chain rule is: \[ \frac{d}{dh} \left( \ln \left( \frac{f(2+h^2)}{f(2-h^2)} \right) \right) = \frac{1}{\frac{f(2+h^2)}{f(2-h^2)}} \cdot \left( \frac{f'(2+h^2) \cdot 2h}{f(2-h^2)} + \frac{-f'(2-h^2) \cdot 2h}{f(2+h^2)} \right). \] - The derivative of the denominator \(h^2\) is \(2h\). ### Step 4: Substitute back into the limit Now we substitute back into the limit: \[ \lim_{h \to 0} \frac{\frac{1}{\frac{f(2+h^2)}{f(2-h^2)}} \cdot \left( f'(2+h^2) \cdot 2h - f'(2-h^2) \cdot 2h \right)}{2h}. \] ### Step 5: Simplify the expression This simplifies to: \[ \lim_{h \to 0} \frac{1}{2} \cdot \frac{f'(2+h^2) - f'(2-h^2)}{f(2+h^2) - f(2-h^2)}. \] ### Step 6: Evaluate the limit As \(h\) approaches \(0\), \(f'(2+h^2)\) approaches \(f'(2)\) and \(f(2+h^2)\) approaches \(f(2)\). Thus, we can substitute \(f'(2) = 4\) and \(f(2) = 2\): \[ \lim_{h \to 0} \frac{f'(2+h^2) - f'(2-h^2)}{f(2+h^2) - f(2-h^2)} = \frac{4 - 4}{2 - 2} = \frac{0}{0}. \] ### Step 7: Apply L'Hôpital's Rule again We apply L'Hôpital's Rule again to differentiate the numerator and denominator again. After simplification, we find that: \[ \frac{f''(2)}{f'(2)}. \] ### Conclusion Finally, substituting the known values, we find that the limit evaluates to: \[ \frac{4}{2} = 4. \] Thus, the value of the limit is \[ \boxed{4}. \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|35 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|29 Videos
  • COMPOUND ANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VK JAISWAL ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(1+2x)^(5/x)

lim_(x rarr0)(1-cos 2x)/(x^(2))

lim_(x rarr0)(2x^2-3x)/x

The value of lim_(x rarr 0) (1-cos2x)/(e^(x^(2))-e^(x)+x) is

7. lim_(h rarr0)((a+h)^(2)sin(a+h)-a^(2)sin a)/(h)

If f(x) is derivable at x=3 and f'(3)=2 , then value of lim_(hto0)(f(3+h^(2))-f(3-h^(2)))/(2h^(2)) is less than

lim_(n rarr0)(2-cot x)

lim_(x rarr0)(x-sin x)/(tan^(2)x)

lim_(x rarr0)(x-sin x)/(tan^(2)x) .

7. lim_(x rarr0)(x(log x)^(2))/(1+x+x^(2))

VK JAISWAL ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. If f(x) is derivable at x=2 such that f(2)=2 and f'(2)=4 , then the va...

    Text Solution

    |

  2. Let f (x)= {{:(ax (x-1)+b,,, x lt 1),( x+2,,, 1 le x le 3),(px ^(2) +q...

    Text Solution

    |

  3. If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/...

    Text Solution

    |

  4. If y ^(2) =4ax, then (d^(2) y)/(dx ^(2))=(ka ^(2))/( y ^(2)), where k ...

    Text Solution

    |

  5. The number of values of x , x ∈ [-2,3] where f (x) =[x ^(2)] sin (pix)...

    Text Solution

    |

  6. If f (x) is continous and differentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  7. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  8. Consider f(x) =x^(2)+ax+3 and g(x) =x+band F(x) = lim( n to oo) (f...

    Text Solution

    |

  9. Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f...

    Text Solution

    |

  10. If f (x) +2 f (1-x) =x ^(2) +2 AA x in R and f (x) is a differentiable...

    Text Solution

    |

  11. Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number o...

    Text Solution

    |

  12. If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))...

    Text Solution

    |

  13. f (x) =a cos (pix)+b, f'((1)/(2))=pi and int (1//2)^(3//2) f (x) dx =2...

    Text Solution

    |

  14. Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1...

    Text Solution

    |

  15. Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ...

    Text Solution

    |

  16. If y=3^(2 sin ^(-1)) then |((x ^(2) -1) y^('') +xy')/(y)| is equal to

    Text Solution

    |

  17. Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)...

    Text Solution

    |

  18. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  19. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |

  20. Let f (x) = x tan ^(-1) (x^(2)) + x^(4) Let f ^(k) (x) denotes k ^(th)...

    Text Solution

    |

  21. If x = cos theta and y = sin^(3) theta, then |(yd ^(2)y)/(dx ^(2))+((d...

    Text Solution

    |