Home
Class 12
MATHS
Let f and g be differrntiable functions...

Let `f and g ` be differrntiable functions on R (the set of all real numbers) such that `g (1)=2=g '(1) and f'(0) =4. If h (x)= f (2xg (x)+ cos pi x-3)` then `h'(1)` is equal to:

A

28

B

24

C

32

D

18

Text Solution

AI Generated Solution

The correct Answer is:
To find \( h'(1) \) for the function \( h(x) = f(2xg(x) + \cos(\pi x) - 3) \), we will use the chain rule and the product rule for differentiation. Let's go through the steps systematically. ### Step 1: Differentiate \( h(x) \) Using the chain rule, we differentiate \( h(x) \): \[ h'(x) = f'(u) \cdot u' \] where \( u = 2xg(x) + \cos(\pi x) - 3 \). ### Step 2: Differentiate \( u \) Now we need to find \( u' \): \[ u' = \frac{d}{dx}(2xg(x)) + \frac{d}{dx}(\cos(\pi x)) - \frac{d}{dx}(3) \] Using the product rule on \( 2xg(x) \): \[ \frac{d}{dx}(2xg(x)) = 2g(x) + 2xg'(x) \] And differentiating \( \cos(\pi x) \): \[ \frac{d}{dx}(\cos(\pi x)) = -\pi \sin(\pi x) \] Thus, we have: \[ u' = 2g(x) + 2xg'(x) - \pi \sin(\pi x) \] ### Step 3: Substitute \( u \) and \( u' \) into \( h'(x) \) Now substituting back into the expression for \( h'(x) \): \[ h'(x) = f'(u) \cdot (2g(x) + 2xg'(x) - \pi \sin(\pi x)) \] ### Step 4: Evaluate \( h'(1) \) Now we need to evaluate \( h'(1) \): 1. Calculate \( u \) at \( x = 1 \): \[ u = 2(1)g(1) + \cos(\pi \cdot 1) - 3 = 2g(1) - 1 - 3 = 2g(1) - 4 \] 2. We know \( g(1) = 2 \), so: \[ u = 2(2) - 4 = 4 - 4 = 0 \] 3. Now calculate \( u' \) at \( x = 1 \): \[ u' = 2g(1) + 2(1)g'(1) - \pi \sin(\pi \cdot 1) = 2(2) + 2(1)(g'(1)) - \pi(0) \] \[ u' = 4 + 2g'(1) \] Given \( g'(1) = 2 \): \[ u' = 4 + 2(2) = 4 + 4 = 8 \] 4. Now substitute \( u = 0 \) into \( h'(1) \): \[ h'(1) = f'(0) \cdot u' = f'(0) \cdot 8 \] Given \( f'(0) = 4 \): \[ h'(1) = 4 \cdot 8 = 32 \] ### Final Answer Thus, \( h'(1) = 32 \). ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|35 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|29 Videos
  • COMPOUND ANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VK JAISWAL ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

Let f (x) and g (x) be two differentiable functions, defined as: f (x)=x ^(2) +xg'(1)+g'' (2) and g (x)= f (1) x^(2) +x f' (x)+ f''(x). The value of f (1) +g (-1) is:

Let f(x)=sqrt(x) and g(x) = x be two functions defined over the set of nonnegative real numbers. Find (f + g) (x) , (f - g) (x) , (fg) (x) and (f/g)(x) .

Let f(x)=sqrt(x) and g(x) = x be two functions defined over the set of nonnegative real numbers. Find (f + g) (x) , (f g) (x) , (fg) (x) and (f/g)(x) .

f(x) and g(x) are two differentiable functions in [0,2] such that f"(x)=g"(x)=0, f'(1)=2, g'(1)=4, f(2)=3, g(2)=9 then f(x)-g(x) at x=3/2 is

Let f and g be two differentiable functins such that: f (x)=g '(1) sin x+ (g'' (2) -1) x g (x) = x^(2) -f'((pi)/(2)) x+ f'(-(pi)/(2)) If phi (x) =f ^(-1) (x) then phi'((pi)/(2) +1) equals to :

let f(x) = sqrtx and g(x) =x be function defined over the set of non negative real numbers . find (f+g)(x) , (f-g)(x) , (fg)(x) and (f/g)(x) .

Let f and g be two differentiable functins such that: f (x)=g '(1) sin x+ (g'' (2) -1) x g (x) = x^(2) -f'((pi)/(2)) x+ f'(-(pi)/(2)) The number of solution (s) of the equation f (x) = g (x) is/are :

Let f:R to R and h:R to R be differentiable functions such that f(x)=x^(3)+3x+2,g(f(x))=x and h(g(x))=x for all x in R . Then, h'(1) equals.

Let f:R to R and h:R to R be differentiable functions such that f(x)=x^(3)+3x+2,g(f(x))=x and h(g(x))=x for all x in R . Then, h'(1) equals.

Let f and g be two differentiable functins such that: f (x)=g '(1) sin x+ (g'' (2) -1) x g (x) = x^(2) -f'((pi)/(2)) x+ f'(-(pi)/(2)) If int(g (cos x))/( f (x)-x)dx = cos x + ln (h (x))+C where C is constant and h((pi)/(2)) =1 then |h ((2pi)/(3))| is:

VK JAISWAL ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. Let f and g be differrntiable functions on R (the set of all real num...

    Text Solution

    |

  2. Let f (x)= {{:(ax (x-1)+b,,, x lt 1),( x+2,,, 1 le x le 3),(px ^(2) +q...

    Text Solution

    |

  3. If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/...

    Text Solution

    |

  4. If y ^(2) =4ax, then (d^(2) y)/(dx ^(2))=(ka ^(2))/( y ^(2)), where k ...

    Text Solution

    |

  5. The number of values of x , x ∈ [-2,3] where f (x) =[x ^(2)] sin (pix)...

    Text Solution

    |

  6. If f (x) is continous and differentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  7. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  8. Consider f(x) =x^(2)+ax+3 and g(x) =x+band F(x) = lim( n to oo) (f...

    Text Solution

    |

  9. Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f...

    Text Solution

    |

  10. If f (x) +2 f (1-x) =x ^(2) +2 AA x in R and f (x) is a differentiable...

    Text Solution

    |

  11. Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number o...

    Text Solution

    |

  12. If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))...

    Text Solution

    |

  13. f (x) =a cos (pix)+b, f'((1)/(2))=pi and int (1//2)^(3//2) f (x) dx =2...

    Text Solution

    |

  14. Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1...

    Text Solution

    |

  15. Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ...

    Text Solution

    |

  16. If y=3^(2 sin ^(-1)) then |((x ^(2) -1) y^('') +xy')/(y)| is equal to

    Text Solution

    |

  17. Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)...

    Text Solution

    |

  18. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  19. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |

  20. Let f (x) = x tan ^(-1) (x^(2)) + x^(4) Let f ^(k) (x) denotes k ^(th)...

    Text Solution

    |

  21. If x = cos theta and y = sin^(3) theta, then |(yd ^(2)y)/(dx ^(2))+((d...

    Text Solution

    |