Home
Class 12
MATHS
If f (x)= {{:((x-e ^(x)+1-(1-cos 2x))/(x...

If `f (x)= {{:((x-e ^(x)+1-(1-cos 2x))/(x ^(2)), x ne 0),(k,x=0):}` is continous at `x=0` then which of the following statement is false ?

A

`k= (-5)/(2)`

B

`{k}=1/2`

C

`[k]=-2`

D

`[k] {k} =(-3)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( k \) such that the function \[ f(x) = \begin{cases} \frac{x - e^x + 1 - (1 - \cos 2x)}{x^2} & \text{if } x \neq 0 \\ k & \text{if } x = 0 \end{cases} \] is continuous at \( x = 0 \), we need to find the limit of \( f(x) \) as \( x \) approaches 0 and set it equal to \( k \). ### Step 1: Find the limit as \( x \to 0 \) We will calculate the limit: \[ \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{x - e^x + 1 - (1 - \cos 2x)}{x^2} \] ### Step 2: Simplify the expression The expression simplifies to: \[ \lim_{x \to 0} \frac{x - e^x + \cos 2x}{x^2} \] ### Step 3: Evaluate the limit using L'Hôpital's Rule Since substituting \( x = 0 \) gives a \( \frac{0}{0} \) form, we can apply L'Hôpital's Rule. We differentiate the numerator and denominator: 1. Differentiate the numerator: - The derivative of \( x \) is \( 1 \). - The derivative of \( -e^x \) is \( -e^x \). - The derivative of \( \cos 2x \) is \( -2\sin 2x \). Thus, the derivative of the numerator is: \[ 1 - e^x - 2\sin 2x \] 2. Differentiate the denominator: - The derivative of \( x^2 \) is \( 2x \). So we have: \[ \lim_{x \to 0} \frac{1 - e^x - 2\sin 2x}{2x} \] ### Step 4: Apply L'Hôpital's Rule again This again results in a \( \frac{0}{0} \) form, so we apply L'Hôpital's Rule again: 1. Differentiate the numerator: - The derivative of \( 1 \) is \( 0 \). - The derivative of \( -e^x \) is \( -e^x \). - The derivative of \( -2\sin 2x \) is \( -4\cos 2x \). Thus, the new numerator is: \[ -e^x - 4\cos 2x \] 2. Differentiate the denominator: - The derivative of \( 2x \) is \( 2 \). Now we have: \[ \lim_{x \to 0} \frac{-e^x - 4\cos 2x}{2} \] ### Step 5: Evaluate the limit Substituting \( x = 0 \): \[ -e^0 - 4\cos(0) = -1 - 4 = -5 \] So, \[ \lim_{x \to 0} f(x) = \frac{-5}{2} \] ### Step 6: Set the limit equal to \( k \) For continuity at \( x = 0 \): \[ k = -\frac{5}{2} \] ### Step 7: Analyze the statements 1. \( k = -\frac{5}{2} \) is true. 2. The greatest integer of \( k \) is \( -3 \) (true). 3. The fractional part of \( k \) is \( \frac{1}{2} \) (true). 4. The statement "greatest integer \( k \) and fractional part of \( k \) will be equal to \( -\frac{3}{2} \)" is false. ### Conclusion The false statement is: **The greatest integer and fractional part of \( k \) will be equal to \( -\frac{3}{2} \)**.
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|35 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|29 Videos
  • COMPOUND ANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VK JAISWAL ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

If f (x) = [{:((ae^(sin x )+be ^(-sinx)-c)/(x ^(2)),,, x ne0),(2, ,, x =0):} is continous at x=0, then:

If f(x) = (x-e^(x) + cos 2x)/(x^(2)), x ne 0 is continuous at x = 0, then

If f(x)= {{:(,(x log cos x)/(log(1+x^(2))),x ne 0),(,0,x=0):} then

If f(x)={{:(,x^(m)sin((1)/(x)),x ne 0),(,0,x=0):} is a continous at x=0, then

If f(x)={{:(,((4^(x)-1)^(3))/(sin(x//4)log(1+x^(2)//3)),x ne 0),(,k,x=0):} is a continous at x=0, then k=

f(x)={{:((1-cos2x)/(x^(2)),if x ne 0),(5, if x = 0):} at x = 0 .

If f(x) = {{:((log(1+2ax)-log(1-bx))/(x)",",x ne 0),(" "k",",x = 0):} is continuous at x = 0, then k is equal to

If f (x) {{:((1 - cos 8 x )/(x^(2)) "," x ge 0 ),(lambda ", " x lt 0 ) :} is continous at x = 0 than lambda = ?

If f(x)={((1-coskx)/(xsinx) ,, x!=0),(1/2 ,, x=0):} is continuous at x=0, find k

The value of k for which f(x)= {((1-cos 2x )/(x^2 )", " x ne 0 ),(k ", "x=0):} continuous at x=0, is :

VK JAISWAL ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. If f (x)= {{:((x-e ^(x)+1-(1-cos 2x))/(x ^(2)), x ne 0),(k,x=0):} is c...

    Text Solution

    |

  2. Let f (x)= {{:(ax (x-1)+b,,, x lt 1),( x+2,,, 1 le x le 3),(px ^(2) +q...

    Text Solution

    |

  3. If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/...

    Text Solution

    |

  4. If y ^(2) =4ax, then (d^(2) y)/(dx ^(2))=(ka ^(2))/( y ^(2)), where k ...

    Text Solution

    |

  5. The number of values of x , x ∈ [-2,3] where f (x) =[x ^(2)] sin (pix)...

    Text Solution

    |

  6. If f (x) is continous and differentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  7. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  8. Consider f(x) =x^(2)+ax+3 and g(x) =x+band F(x) = lim( n to oo) (f...

    Text Solution

    |

  9. Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f...

    Text Solution

    |

  10. If f (x) +2 f (1-x) =x ^(2) +2 AA x in R and f (x) is a differentiable...

    Text Solution

    |

  11. Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number o...

    Text Solution

    |

  12. If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))...

    Text Solution

    |

  13. f (x) =a cos (pix)+b, f'((1)/(2))=pi and int (1//2)^(3//2) f (x) dx =2...

    Text Solution

    |

  14. Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1...

    Text Solution

    |

  15. Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ...

    Text Solution

    |

  16. If y=3^(2 sin ^(-1)) then |((x ^(2) -1) y^('') +xy')/(y)| is equal to

    Text Solution

    |

  17. Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)...

    Text Solution

    |

  18. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  19. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |

  20. Let f (x) = x tan ^(-1) (x^(2)) + x^(4) Let f ^(k) (x) denotes k ^(th)...

    Text Solution

    |

  21. If x = cos theta and y = sin^(3) theta, then |(yd ^(2)y)/(dx ^(2))+((d...

    Text Solution

    |