Home
Class 12
MATHS
For t in (0,1), Let \x= sqrt( 2 ^(sin^(-...

For `t in (0,1), Let \x= sqrt( 2 ^(sin^(-1)(t))) and y=sqrt(2 ^(cos^(-1)(t)))` then `1+ ((dy)/(dx))^(2)` equals :

A

`(x ^(2))/(y ^(2))`

B

`(y ^(2))/(x ^(2))`

C

`(x ^(2) + y ^(2))/( y ^(2))`

D

`(x ^(2) + y ^(2))/( x ^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( 1 + \left( \frac{dy}{dx} \right)^2 \) given the expressions for \( x \) and \( y \): \[ x = \sqrt{2^{\sin^{-1}(t)}} \] \[ y = \sqrt{2^{\cos^{-1}(t)}} \] ### Step 1: Rewrite \( x \) and \( y \) We can rewrite \( x \) and \( y \) as follows: \[ x = 2^{\frac{1}{2} \sin^{-1}(t)} \] \[ y = 2^{\frac{1}{2} \cos^{-1}(t)} \] ### Step 2: Take the logarithm of \( x \) and \( y \) Taking the logarithm of both sides: \[ \log x = \frac{1}{2} \sin^{-1}(t) \log 2 \] \[ \log y = \frac{1}{2} \cos^{-1}(t) \log 2 \] ### Step 3: Differentiate \( x \) and \( y \) with respect to \( t \) Differentiating \( x \): \[ \frac{1}{x} \frac{dx}{dt} = \frac{1}{2} \log 2 \cdot \frac{1}{\sqrt{1 - t^2}} \] Thus, \[ \frac{dx}{dt} = \frac{1}{2} \log 2 \cdot x \cdot \frac{1}{\sqrt{1 - t^2}} \] Differentiating \( y \): \[ \frac{1}{y} \frac{dy}{dt} = \frac{1}{2} \log 2 \cdot \left(-\frac{1}{\sqrt{1 - t^2}}\right) \] Thus, \[ \frac{dy}{dt} = -\frac{1}{2} \log 2 \cdot y \cdot \frac{1}{\sqrt{1 - t^2}} \] ### Step 4: Find \( \frac{dy}{dx} \) Using the chain rule: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} \] Substituting the expressions we found: \[ \frac{dy}{dx} = \frac{-\frac{1}{2} \log 2 \cdot y \cdot \frac{1}{\sqrt{1 - t^2}}}{\frac{1}{2} \log 2 \cdot x \cdot \frac{1}{\sqrt{1 - t^2}}} \] The \( \frac{1}{\sqrt{1 - t^2}} \) and \( \frac{1}{2} \log 2 \) cancel out: \[ \frac{dy}{dx} = -\frac{y}{x} \] ### Step 5: Calculate \( \left( \frac{dy}{dx} \right)^2 \) Now we square \( \frac{dy}{dx} \): \[ \left( \frac{dy}{dx} \right)^2 = \left(-\frac{y}{x}\right)^2 = \frac{y^2}{x^2} \] ### Step 6: Find \( 1 + \left( \frac{dy}{dx} \right)^2 \) Now we can find: \[ 1 + \left( \frac{dy}{dx} \right)^2 = 1 + \frac{y^2}{x^2} \] To combine these, we can write: \[ 1 + \frac{y^2}{x^2} = \frac{x^2 + y^2}{x^2} \] ### Final Answer Thus, the final result is: \[ 1 + \left( \frac{dy}{dx} \right)^2 = \frac{x^2 + y^2}{x^2} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|35 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|29 Videos
  • COMPOUND ANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VK JAISWAL ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

If x = sqrt(a^(sin^(-1)t)) , y = sqrt(a^(cos^(-1)t) then show that, dy/dx=-y/x.

If x=sqrt(a^(sin^(-1)t)), y=sqrt(a^(cos^(-1)t)) , Show that (dy)/(dx)=-y/x .

If x=sqrt(a^(sin^(-1)t)), y=sqrt(a^(cos^(-1)t)) , show that (dy)/(dx)=-y/x

If x=sqrt(a^(sin^-1t)) , y=sqrt(a^(cos^-1t)) , then (dy)/(dx)=.........

If x=sqrt(a^sin^((-1)t)), y=sqrt(a^cos^((-1)t)) , show that (dy)/(dx)=-y/x

If x=sqrt(a^sin^(-1t) , y=sqrt(a^cos^((-1)t)) , show that (dy)/(dx)=-y/x

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y) , then (dy)/(dx) equals

If x = t + (1)/(t) "and " y = t - (1)/(t) . "then" (dy)/(dx) is equal to

If x=sqrt(a^(sin^(-1)t)),y=sqrt(a^(cos^(-1)t) , a >0 a n d -1 < t < 1 , show that (dy)/(dx)=-y/x .

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)) , then (dy)/(dx) is equal to

VK JAISWAL ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. For t in (0,1), Let \x= sqrt( 2 ^(sin^(-1)(t))) and y=sqrt(2 ^(cos^(-1...

    Text Solution

    |

  2. Let f (x)= {{:(ax (x-1)+b,,, x lt 1),( x+2,,, 1 le x le 3),(px ^(2) +q...

    Text Solution

    |

  3. If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/...

    Text Solution

    |

  4. If y ^(2) =4ax, then (d^(2) y)/(dx ^(2))=(ka ^(2))/( y ^(2)), where k ...

    Text Solution

    |

  5. The number of values of x , x ∈ [-2,3] where f (x) =[x ^(2)] sin (pix)...

    Text Solution

    |

  6. If f (x) is continous and differentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  7. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  8. Consider f(x) =x^(2)+ax+3 and g(x) =x+band F(x) = lim( n to oo) (f...

    Text Solution

    |

  9. Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f...

    Text Solution

    |

  10. If f (x) +2 f (1-x) =x ^(2) +2 AA x in R and f (x) is a differentiable...

    Text Solution

    |

  11. Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number o...

    Text Solution

    |

  12. If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))...

    Text Solution

    |

  13. f (x) =a cos (pix)+b, f'((1)/(2))=pi and int (1//2)^(3//2) f (x) dx =2...

    Text Solution

    |

  14. Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1...

    Text Solution

    |

  15. Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ...

    Text Solution

    |

  16. If y=3^(2 sin ^(-1)) then |((x ^(2) -1) y^('') +xy')/(y)| is equal to

    Text Solution

    |

  17. Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)...

    Text Solution

    |

  18. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  19. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |

  20. Let f (x) = x tan ^(-1) (x^(2)) + x^(4) Let f ^(k) (x) denotes k ^(th)...

    Text Solution

    |

  21. If x = cos theta and y = sin^(3) theta, then |(yd ^(2)y)/(dx ^(2))+((d...

    Text Solution

    |