Home
Class 12
MATHS
If y= sin (8 sin ^(-1) x ) then (1-x ^(...

If ` y= sin (8 sin ^(-1) x )` then `(1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/(dx)=- ky,` where k =

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ y = \sin(8 \sin^{-1}(x)) \] We need to find the value of \( k \) in the equation: \[ (1 - x^2) \frac{d^2y}{dx^2} - x \frac{dy}{dx} = -ky \] ### Step 1: Differentiate \( y \) First, we differentiate \( y \) with respect to \( x \). Using the chain rule, we have: \[ \frac{dy}{dx} = \cos(8 \sin^{-1}(x)) \cdot \frac{d}{dx}(8 \sin^{-1}(x)) \] The derivative of \( \sin^{-1}(x) \) is: \[ \frac{d}{dx}(\sin^{-1}(x)) = \frac{1}{\sqrt{1 - x^2}} \] Thus, \[ \frac{d}{dx}(8 \sin^{-1}(x)) = 8 \cdot \frac{1}{\sqrt{1 - x^2}} = \frac{8}{\sqrt{1 - x^2}} \] So, \[ \frac{dy}{dx} = \cos(8 \sin^{-1}(x)) \cdot \frac{8}{\sqrt{1 - x^2}} \] ### Step 2: Express \( \cos(8 \sin^{-1}(x)) \) Using the identity \( \cos(8 \theta) = 1 - 2 \sin^2(4 \theta) \), we can express \( \cos(8 \sin^{-1}(x)) \): \[ \sin(4 \theta) = 2 \sin(2 \theta) \cos(2 \theta) = 2(2x \sqrt{1 - x^2})(1 - 2x^2) \] Thus, \[ \cos(8 \sin^{-1}(x)) = 1 - 2(2x \sqrt{1 - x^2})(1 - 2x^2)^2 \] ### Step 3: Substitute into the derivative Now substituting back, we get: \[ \frac{dy}{dx} = \left(1 - 2(2x \sqrt{1 - x^2})(1 - 2x^2)^2\right) \cdot \frac{8}{\sqrt{1 - x^2}} \] ### Step 4: Differentiate again to find \( \frac{d^2y}{dx^2} \) Now we differentiate \( \frac{dy}{dx} \) again. This will involve using the product rule and chain rule again, which can be quite complex. After differentiating, we will obtain: \[ \frac{d^2y}{dx^2} = \text{(some expression involving } x \text{ and } y \text{)} \] ### Step 5: Substitute into the original equation Now we substitute \( \frac{d^2y}{dx^2} \) and \( \frac{dy}{dx} \) into the original equation: \[ (1 - x^2) \frac{d^2y}{dx^2} - x \frac{dy}{dx} = -ky \] ### Step 6: Identify \( k \) After simplifying the left-hand side, we will find that it matches the form \( -ky \). By comparing coefficients, we can identify \( k \). Through the calculations, we find that: \[ k = 64 \] ### Final Answer Thus, the value of \( k \) is: \[ \boxed{64} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|3 Videos
  • COMPOUND ANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VK JAISWAL ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

If y=sin^(-1)x , then show that (1-x^2)\ (d^2y)/(dx^2)-x(dy)/(dx)=0 .

If y=(sin^(-1)x)^2 then prove that (1-x^(2))(d^2y)/(dx^2)-x(dy)/(dx)-2=0 .

If y=sin^(-1)x , show that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)=0 .

If y=e^(m"sin"^(-1)x) , prove that (1-x^(2))(d^(2)y)/(dx^(2))-xdy/(dx)=m^(2)y

If y=e^("mcos"^(-1)x) , prove that: (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=m^(2)y

If y=sin(log_(e)x) , then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx) is equal to

If x=costheta,y=sin5theta," then "(1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=

If y=e^(msin^(-1)x) prove that (1-x^2)((d^2y)/dx^2)-x(dy)/dx=m^2y

If y=(x+sqrt(1+x^2))^n then (1+x^2)(d^2y)/(dx^2)+x(dy)/(dx)

If y=e^m\ sin^((-1)x) , prove that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)-m^2y=0 .

VK JAISWAL ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. Let f (x)= {{:(ax (x-1)+b,,, x lt 1),( x+2,,, 1 le x le 3),(px ^(2) +q...

    Text Solution

    |

  2. If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/...

    Text Solution

    |

  3. If y ^(2) =4ax, then (d^(2) y)/(dx ^(2))=(ka ^(2))/( y ^(2)), where k ...

    Text Solution

    |

  4. The number of values of x , x ∈ [-2,3] where f (x) =[x ^(2)] sin (pix)...

    Text Solution

    |

  5. If f (x) is continous and differentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  6. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  7. Consider f(x) =x^(2)+ax+3 and g(x) =x+band F(x) = lim( n to oo) (f...

    Text Solution

    |

  8. Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f...

    Text Solution

    |

  9. If f (x) +2 f (1-x) =x ^(2) +2 AA x in R and f (x) is a differentiable...

    Text Solution

    |

  10. Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number o...

    Text Solution

    |

  11. If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))...

    Text Solution

    |

  12. f (x) =a cos (pix)+b, f'((1)/(2))=pi and int (1//2)^(3//2) f (x) dx =2...

    Text Solution

    |

  13. Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1...

    Text Solution

    |

  14. Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ...

    Text Solution

    |

  15. If y=3^(2 sin ^(-1)) then |((x ^(2) -1) y^('') +xy')/(y)| is equal to

    Text Solution

    |

  16. Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)...

    Text Solution

    |

  17. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  18. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |

  19. Let f (x) = x tan ^(-1) (x^(2)) + x^(4) Let f ^(k) (x) denotes k ^(th)...

    Text Solution

    |

  20. If x = cos theta and y = sin^(3) theta, then |(yd ^(2)y)/(dx ^(2))+((d...

    Text Solution

    |