Home
Class 12
MATHS
Let alpha (x) = f(x) -f (2x) and beta (x...

Let `alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1) =5 alpha'(2) =7` then find the vlaue of `beta'(1)-10`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \beta'(1) - 10 \) given the functions \( \alpha(x) = f(x) - f(2x) \) and \( \beta(x) = f(x) - f(4x) \), along with the derivatives \( \alpha'(1) = 5 \) and \( \alpha'(2) = 7 \). ### Step 1: Differentiate \( \alpha(x) \) We start by differentiating \( \alpha(x) \): \[ \alpha'(x) = f'(x) - f'(2x) \cdot 2 \] This is because we apply the chain rule to differentiate \( f(2x) \). ### Step 2: Evaluate \( \alpha'(1) \) Now we substitute \( x = 1 \) into the derivative: \[ \alpha'(1) = f'(1) - 2f'(2) \] Given that \( \alpha'(1) = 5 \), we can write: \[ f'(1) - 2f'(2) = 5 \quad \text{(Equation 1)} \] ### Step 3: Evaluate \( \alpha'(2) \) Next, we substitute \( x = 2 \) into the derivative: \[ \alpha'(2) = f'(2) - 2f'(4) \] Given that \( \alpha'(2) = 7 \), we can write: \[ f'(2) - 2f'(4) = 7 \quad \text{(Equation 2)} \] ### Step 4: Solve for \( f'(2) \) From Equation 1, we can express \( f'(1) \): \[ f'(1) = 5 + 2f'(2) \] ### Step 5: Substitute into Equation 2 Now we substitute \( f'(1) \) into Equation 2: \[ f'(2) - 2f'(4) = 7 \] We can rearrange this to express \( f'(4) \): \[ f'(4) = \frac{f'(2) - 7}{2} \quad \text{(Equation 3)} \] ### Step 6: Differentiate \( \beta(x) \) Now we differentiate \( \beta(x) \): \[ \beta'(x) = f'(x) - f'(4x) \cdot 4 \] ### Step 7: Evaluate \( \beta'(1) \) Substituting \( x = 1 \): \[ \beta'(1) = f'(1) - 4f'(4) \] ### Step 8: Substitute \( f'(4) \) Using Equation 3, we substitute \( f'(4) \) into the expression for \( \beta'(1) \): \[ \beta'(1) = f'(1) - 4 \left(\frac{f'(2) - 7}{2}\right) \] This simplifies to: \[ \beta'(1) = f'(1) - 2(f'(2) - 7) \] \[ \beta'(1) = f'(1) - 2f'(2) + 14 \] ### Step 9: Substitute \( f'(1) \) Now we substitute \( f'(1) \) from Equation 1: \[ \beta'(1) = (5 + 2f'(2)) - 2f'(2) + 14 \] This simplifies to: \[ \beta'(1) = 5 + 14 = 19 \] ### Step 10: Find \( \beta'(1) - 10 \) Finally, we calculate \( \beta'(1) - 10 \): \[ \beta'(1) - 10 = 19 - 10 = 9 \] Thus, the final answer is: \[ \boxed{9} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|3 Videos
  • COMPOUND ANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VK JAISWAL ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(cotx)/(1+cotx)andalpha+beta=(5pi)/(4) , then find f(alpha).f(beta) .

If alpha,beta are zeroes of polynomial f(x) =x^(2)-p(x+1)-c , then find the value of (alpha+1)(beta+1) .

If f (x) = 27x^(3) -(1)/(x^(3)) and alpha, beta are roots of 3x - (1)/(x) = 2 then

If alpha and beta are zeroes of 5x^(2)-7x+1 , then find the value of (1)/(alpha)+(1)/(beta) .

Let alpha + beta = 1, 2 alpha^(2) + 2beta^(2) = 1 and f(x) be a continuous function such that f(2 + x) + f(x) = 2 for all x in [0, 2] and p = int_(0)^(4) f(x) dx - 4, q = (alpha)/(beta) . Then, find the least positive integral value of 'a' for which the equation ax^(2) - bx + c = 0 has both roots lying between p and q, where a, b, c in N .

If alpha and beta are the roots of the equation x^2+4x + 1=0(alpha > beta) then find the value of 1/(alpha)^2 + 1/(beta)^2

If alpha and beta are the roots of 2x^(2) + 5x - 4 = 0 then find the value of (alpha)/(beta) + (beta)/(alpha) .

If alpha and beta are the roots of x^(2)+4x+6=0 and N=1/((alpha)/(beta)+(beta)/(alpha)) then N=

If alpha and beta are zeroes of the quadratic polynomial f(x) =3x^(2)-5x-2 , then find the value of ((alpha^(2))/(beta)+(beta^(2))/(alpha))+6(alpha+1)(beta+1) .

consider f(X)= cos2x+2xlambda^(2)+(2lambda+1)(lambda-1)x^(2),lambda in R If alpha ne beta and f(alpha+beta)/(2)lt(f(alpha)+f(beta))/(2) for alpha and beta then find the values of lambda

VK JAISWAL ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. If y ^(2) =4ax, then (d^(2) y)/(dx ^(2))=(ka ^(2))/( y ^(2)), where k ...

    Text Solution

    |

  2. The number of values of x , x ∈ [-2,3] where f (x) =[x ^(2)] sin (pix)...

    Text Solution

    |

  3. If f (x) is continous and differentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  4. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  5. Consider f(x) =x^(2)+ax+3 and g(x) =x+band F(x) = lim( n to oo) (f...

    Text Solution

    |

  6. Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f...

    Text Solution

    |

  7. If f (x) +2 f (1-x) =x ^(2) +2 AA x in R and f (x) is a differentiable...

    Text Solution

    |

  8. Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number o...

    Text Solution

    |

  9. If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))...

    Text Solution

    |

  10. f (x) =a cos (pix)+b, f'((1)/(2))=pi and int (1//2)^(3//2) f (x) dx =2...

    Text Solution

    |

  11. Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1...

    Text Solution

    |

  12. Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ...

    Text Solution

    |

  13. If y=3^(2 sin ^(-1)) then |((x ^(2) -1) y^('') +xy')/(y)| is equal to

    Text Solution

    |

  14. Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)...

    Text Solution

    |

  15. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  16. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |

  17. Let f (x) = x tan ^(-1) (x^(2)) + x^(4) Let f ^(k) (x) denotes k ^(th)...

    Text Solution

    |

  18. If x = cos theta and y = sin^(3) theta, then |(yd ^(2)y)/(dx ^(2))+((d...

    Text Solution

    |

  19. The value of x, x in (2,oo) where f (x) = sqrt(x sqrt(8x-16))+ sqrt(x-...

    Text Solution

    |

  20. The number of non differentiability of runction f (x) = min (|x| , {x}...

    Text Solution

    |