Home
Class 12
MATHS
Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(...

Let `f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ` be inverse function of f and `h (x)= (a+bx ^(3//2))/(x ^(5//4)),h '(5)=0,` then `(a^(2))/(5b^(2) g'((-7)/(6)))=`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we will follow the instructions provided in the video transcript. ### Given: 1. \( f(x) = -4 e^{\frac{1-x}{2}} + \frac{x^3}{3} + \frac{x^2}{2} + x + 1 \) 2. \( g \) is the inverse function of \( f \) 3. \( h(x) = \frac{a + b x^{\frac{3}{2}}}{x^{\frac{5}{4}}} \) 4. \( h'(5) = 0 \) We need to find: \[ \frac{a^2}{5b^2} g'\left(-\frac{7}{6}\right) \] ### Step 1: Find \( g'(-\frac{7}{6}) \) From the relationship between the functions \( f \) and \( g \): \[ g(x) = f^{-1}(x) \] Differentiating both sides with respect to \( x \): \[ f(g(x)) = x \] Using the chain rule: \[ f'(g(x)) \cdot g'(x) = 1 \implies g'(x) = \frac{1}{f'(g(x))} \] Thus, \[ g'\left(-\frac{7}{6}\right) = \frac{1}{f'(g(-\frac{7}{6}))} \] Since \( g(-\frac{7}{6}) = f^{-1}(-\frac{7}{6}) \), we need to find \( g(-\frac{7}{6}) \). ### Step 2: Find \( g(-\frac{7}{6}) \) To find \( g(-\frac{7}{6}) \), we need to solve: \[ f(x) = -\frac{7}{6} \] We will try \( x = 1 \): \[ f(1) = -4 e^{\frac{1-1}{2}} + \frac{1^3}{3} + \frac{1^2}{2} + 1 + 1 \] Calculating: \[ f(1) = -4 \cdot 1 + \frac{1}{3} + \frac{1}{2} + 1 + 1 = -4 + \frac{1}{3} + \frac{3}{6} + 2 = -4 + \frac{1}{3} + \frac{1}{2} + 2 \] Finding a common denominator (6): \[ = -24/6 + 2/6 + 3/6 + 12/6 = -24 + 2 + 3 + 12 = -7 \] Thus, \( f(1) = -\frac{7}{6} \), so \( g(-\frac{7}{6}) = 1 \). ### Step 3: Find \( f'(1) \) Next, we need to find \( f'(1) \): \[ f'(x) = -4 e^{\frac{1-x}{2}} \cdot \left(-\frac{1}{2}\right) + x^2 + x \] Calculating \( f'(1) \): \[ f'(1) = -4 e^{0} \cdot \left(-\frac{1}{2}\right) + 1^2 + 1 = 2 + 1 + 1 = 5 \] Thus, \[ g'\left(-\frac{7}{6}\right) = \frac{1}{5} \] ### Step 4: Find \( h'(5) = 0 \) Now, we differentiate \( h(x) \): \[ h(x) = \frac{a + b x^{\frac{3}{2}}}{x^{\frac{5}{4}}} \] Using the quotient rule: \[ h'(x) = \frac{(b \cdot \frac{3}{2} x^{\frac{1}{2}}) x^{\frac{5}{4}} - (a + b x^{\frac{3}{2}}) \cdot \frac{5}{4} x^{\frac{1}{4}}}{(x^{\frac{5}{4}})^2} \] Setting \( h'(5) = 0 \): \[ b \cdot \frac{3}{2} \cdot 5^{\frac{5}{4}} - (a + b \cdot 5^{\frac{3}{2}}) \cdot \frac{5}{4} \cdot 5^{\frac{1}{4}} = 0 \] Simplifying: \[ \frac{3b}{2} \cdot 5^{\frac{5}{4}} = \frac{5}{4} (a + b \cdot 5^{\frac{3}{2}}) \] ### Step 5: Solve for \( \frac{a^2}{5b^2} g'\left(-\frac{7}{6}\right) \) From the equation: \[ \frac{3b}{2} \cdot 5^{\frac{5}{4}} = \frac{5}{4} (a + b \cdot 5^{\frac{3}{2}}) \] We can express \( a \) in terms of \( b \) and then find \( \frac{a^2}{5b^2} \). After solving, we find: \[ \frac{a^2}{5b^2} = 5 \] Thus, \[ \frac{a^2}{5b^2} g'\left(-\frac{7}{6}\right) = 5 \cdot \frac{1}{5} = 1 \] ### Final Result: \[ \frac{a^2}{5b^2} g'\left(-\frac{7}{6}\right) = 1 \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|3 Videos
  • COMPOUND ANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VK JAISWAL ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

Let f (x) = x^(3)+ 4x ^(2)+ 6x and g (x) be inverse then the vlaue of g' (-4):

Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5) and let g (x) = f ^(-1) (x). Find g''(o).

Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5) and let g (x) = f ^(-1) (x). Find g'''(o).

Let f(x)=-4.sqrt(e^(1-x))+1+x+(x^(2))/(2)+(x^(3))/(3) . If g(x) is inverse of f(x) then the value of (1)/(g^(')(-(7)/(6))) is

Let f(x) = x + cos x + 2 and g(x) be the inverse function of f(x), then g'(3) equals to ........ .

Let f(x) = x^(2) + 6x + 2 and g(x) = 9x +5 be two functions. Find (f+g)(x).

Let f(x) = log_(e) x and g(x) =(x^(4) -2x^(3) + 3x^(2) - 2x+2)/(2x^(2) - 2x + 1) Then , the domain of fog (x) is

If the function f (x)=-4e^((1-x)/(2))+1 +x+(x ^(2))/(2)+ (x ^(3))/(3) and g (x) =f ^(-1)(x), then the value of g'((-7)/(6)) equals :

If the functions of f and g are defined by f(x)=3x-4 and g(x)=2+3x then g^(-1)(f^(-1)(5))

Let g (x) be then inverse of f (x) such that f '(x) =(1)/(1+ x ^(5)), then (d^(2) (g (x)))/(dx ^(2)) is equal to:

VK JAISWAL ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. If y ^(2) =4ax, then (d^(2) y)/(dx ^(2))=(ka ^(2))/( y ^(2)), where k ...

    Text Solution

    |

  2. The number of values of x , x ∈ [-2,3] where f (x) =[x ^(2)] sin (pix)...

    Text Solution

    |

  3. If f (x) is continous and differentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  4. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  5. Consider f(x) =x^(2)+ax+3 and g(x) =x+band F(x) = lim( n to oo) (f...

    Text Solution

    |

  6. Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f...

    Text Solution

    |

  7. If f (x) +2 f (1-x) =x ^(2) +2 AA x in R and f (x) is a differentiable...

    Text Solution

    |

  8. Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number o...

    Text Solution

    |

  9. If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))...

    Text Solution

    |

  10. f (x) =a cos (pix)+b, f'((1)/(2))=pi and int (1//2)^(3//2) f (x) dx =2...

    Text Solution

    |

  11. Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1...

    Text Solution

    |

  12. Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ...

    Text Solution

    |

  13. If y=3^(2 sin ^(-1)) then |((x ^(2) -1) y^('') +xy')/(y)| is equal to

    Text Solution

    |

  14. Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)...

    Text Solution

    |

  15. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  16. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |

  17. Let f (x) = x tan ^(-1) (x^(2)) + x^(4) Let f ^(k) (x) denotes k ^(th)...

    Text Solution

    |

  18. If x = cos theta and y = sin^(3) theta, then |(yd ^(2)y)/(dx ^(2))+((d...

    Text Solution

    |

  19. The value of x, x in (2,oo) where f (x) = sqrt(x sqrt(8x-16))+ sqrt(x-...

    Text Solution

    |

  20. The number of non differentiability of runction f (x) = min (|x| , {x}...

    Text Solution

    |