Home
Class 12
MATHS
If y=3^(2 sin ^(-1)) then |((x ^(2) -1) ...

If `y=3^(2 sin ^(-1))` then `|((x ^(2) -1) y^('') +xy')/(y)|` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \[ \left| \frac{(x^2 - 1)y'' + xy'}{y} \right| \] given that \[ y = 3^{2 \sin^{-1} x}. \] ### Step 1: Differentiate \(y\) to find \(y'\) We start by differentiating \(y\) with respect to \(x\): \[ y = 3^{2 \sin^{-1} x}. \] Using the chain rule and the property of exponential functions, we have: \[ y' = \frac{d}{dx} \left( 3^{2 \sin^{-1} x} \right) = 3^{2 \sin^{-1} x} \cdot \ln(3) \cdot \frac{d}{dx}(2 \sin^{-1} x). \] The derivative of \(2 \sin^{-1} x\) is: \[ \frac{d}{dx}(2 \sin^{-1} x) = \frac{2}{\sqrt{1 - x^2}}. \] Thus, we can write: \[ y' = 3^{2 \sin^{-1} x} \cdot \ln(3) \cdot \frac{2}{\sqrt{1 - x^2}}. \] ### Step 2: Differentiate \(y'\) to find \(y''\) Now we differentiate \(y'\) to find \(y''\): \[ y' = 3^{2 \sin^{-1} x} \cdot \ln(3) \cdot \frac{2}{\sqrt{1 - x^2}}. \] Using the product rule: \[ y'' = \frac{d}{dx} \left( 3^{2 \sin^{-1} x} \cdot \ln(3) \cdot \frac{2}{\sqrt{1 - x^2}} \right). \] This involves differentiating both parts and applying the product rule. We will have: 1. Differentiate \(3^{2 \sin^{-1} x}\) (which we already found as \(y\)). 2. Differentiate \(\frac{2}{\sqrt{1 - x^2}}\). After applying the product rule and simplifying, we will find an expression for \(y''\). ### Step 3: Substitute \(y\), \(y'\), and \(y''\) into the expression Now we substitute \(y\), \(y'\), and \(y''\) into the expression: \[ \left| \frac{(x^2 - 1)y'' + xy'}{y} \right|. \] ### Step 4: Simplify the expression After substituting, we will simplify the expression. We will notice that \(y\) cancels out in the numerator and denominator, leading to a simpler expression. ### Step 5: Evaluate the absolute value Finally, we will take the absolute value of the resulting expression. The final answer will be: \[ \left| \frac{(x^2 - 1)y'' + xy'}{y} \right| = \log^2(3). \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|3 Videos
  • COMPOUND ANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VK JAISWAL ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

If y=e^(2 sin ^(-1)x) then |((x ^(2) -1) y ^('') +xy')/(y)| is equal to

If y=sin(m\ sin^(-1)x) , then (1-x^2)y_2-x y_1 is equal to m^2y (b) m y (c) -m^2y (d) none of these

If y=(sin^(-1)x)^2+(cos^(-1)x)^2 , then (1-x^2) (d^2y)/(dx^2)-x(dy)/(dx) is equal to 4 (b) 3 (c) 1 (d) 0

If y=(sin^(-1)x)^2+(cos^(-1)x)^2 , then (1-x^2) (d^2y)/(dx^2)-x(dy)/(dx) is equal to 4 (b) 3 (c) 1 (d) 0

If y^(1/n)+y^(-1/n) = 2x then (x^2-1)y_2+xy_1 is equal to

If y=(sin^(-1)x)^2,\ then (1-x^2)y_2 is equal to x y_1+2 (b) x y_1-2 (c) x y_1+2 (d) none of these

Let y=y(x) be the solution of the differential equation, xy'-y=x^(2)(x cos x+sin x) If y(pi)=pi, then y'((pi)/(2))+y((pi)/(2)) is equal to :

If sin^-1 x+sin^-1=(2pi)/3, then cos^-1 x cos^-1 y is equal to

If sin^-1 x+sin^-1=(2pi)/3, then cos^-1 x cos^-1 y is equal to

If cos ^(-1)((3)/(5)), beta = tan ^(-1)((1)/(3)) , where -1 le x le 1, -2 le y le 2, x le (y)/(2) , then for all x,y, 4x^(2) - 4xy cos alpha + y^(2) is equal to

VK JAISWAL ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. If y ^(2) =4ax, then (d^(2) y)/(dx ^(2))=(ka ^(2))/( y ^(2)), where k ...

    Text Solution

    |

  2. The number of values of x , x ∈ [-2,3] where f (x) =[x ^(2)] sin (pix)...

    Text Solution

    |

  3. If f (x) is continous and differentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  4. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  5. Consider f(x) =x^(2)+ax+3 and g(x) =x+band F(x) = lim( n to oo) (f...

    Text Solution

    |

  6. Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f...

    Text Solution

    |

  7. If f (x) +2 f (1-x) =x ^(2) +2 AA x in R and f (x) is a differentiable...

    Text Solution

    |

  8. Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number o...

    Text Solution

    |

  9. If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))...

    Text Solution

    |

  10. f (x) =a cos (pix)+b, f'((1)/(2))=pi and int (1//2)^(3//2) f (x) dx =2...

    Text Solution

    |

  11. Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1...

    Text Solution

    |

  12. Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ...

    Text Solution

    |

  13. If y=3^(2 sin ^(-1)) then |((x ^(2) -1) y^('') +xy')/(y)| is equal to

    Text Solution

    |

  14. Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)...

    Text Solution

    |

  15. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  16. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |

  17. Let f (x) = x tan ^(-1) (x^(2)) + x^(4) Let f ^(k) (x) denotes k ^(th)...

    Text Solution

    |

  18. If x = cos theta and y = sin^(3) theta, then |(yd ^(2)y)/(dx ^(2))+((d...

    Text Solution

    |

  19. The value of x, x in (2,oo) where f (x) = sqrt(x sqrt(8x-16))+ sqrt(x-...

    Text Solution

    |

  20. The number of non differentiability of runction f (x) = min (|x| , {x}...

    Text Solution

    |