Home
Class 12
MATHS
Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 ...

Let `f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)` and let `g (x) = f ^(-1) (x).` Find `g''(o).`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( g''(0) \) where \( g(x) = f^{-1}(x) \) and \( f(x) = x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \frac{x^5}{5} \), we can follow these steps: ### Step 1: Understanding the relationship between \( f \) and \( g \) Since \( g(x) = f^{-1}(x) \), we have: \[ f(g(x)) = x \] Differentiating both sides with respect to \( x \): \[ f'(g(x)) \cdot g'(x) = 1 \] Thus, we can express \( g'(x) \) as: \[ g'(x) = \frac{1}{f'(g(x))} \] ### Step 2: Finding \( g(0) \) To find \( g(0) \), we need to determine \( f^{-1}(0) \). We need to find \( x \) such that \( f(x) = 0 \): \[ f(0) = 0 + 0 + 0 + 0 + 0 = 0 \] Thus, \( g(0) = f^{-1}(0) = 0 \). ### Step 3: Finding \( g'(0) \) Now substituting \( x = 0 \) into the expression for \( g'(x) \): \[ g'(0) = \frac{1}{f'(g(0))} = \frac{1}{f'(0)} \] ### Step 4: Finding \( f'(x) \) Now we need to compute \( f'(x) \): \[ f'(x) = 1 + x + x^2 + x^3 + x^4 \] Evaluating at \( x = 0 \): \[ f'(0) = 1 + 0 + 0 + 0 + 0 = 1 \] Thus: \[ g'(0) = \frac{1}{1} = 1 \] ### Step 5: Finding \( g''(x) \) To find \( g''(x) \), we differentiate \( g'(x) \): \[ g''(x) = -\frac{f''(g(x)) \cdot (g'(x))^2}{(f'(g(x)))^2} \] ### Step 6: Finding \( g''(0) \) Now substituting \( x = 0 \): \[ g''(0) = -\frac{f''(g(0)) \cdot (g'(0))^2}{(f'(g(0)))^2} \] Since \( g(0) = 0 \): \[ g''(0) = -\frac{f''(0) \cdot (g'(0))^2}{(f'(0))^2} \] ### Step 7: Finding \( f''(x) \) Now we compute \( f''(x) \): \[ f''(x) = 1 + 2x + 3x^2 + 4x^3 \] Evaluating at \( x = 0 \): \[ f''(0) = 1 + 0 + 0 + 0 = 1 \] ### Step 8: Putting it all together Now substituting the values we found: \[ g''(0) = -\frac{1 \cdot (1)^2}{(1)^2} = -1 \] Thus, the final answer is: \[ \boxed{-1} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|3 Videos
  • COMPOUND ANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VK JAISWAL ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

If f (x) =3x ^(9) -2x ^(4) +2x ^(3)-3x ^(2) +x+ cosx +5 and g (x) =f ^(-1) (x), then the value of g'(6) equals:

Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g be inverse function of f and h (x)= (a+bx ^(3//2))/(x ^(5//4)),h '(5)=0, then (a^(2))/(5b^(2) g'((-7)/(6)))=

Let f(x) = x+5 and g(x) = x -5 , x in R . Find (fog)(5).

Let f(x)=[x] and g(x)=|x| . Find (f+2g)(-1)

Let f(x)=[x] and g(x)=|x| . Find (gof)(5/3) fog(5/3)

Let f(x)=[x] and g(x)=|x| . Find (gof)(5/3) fog(5/3)

Let f(x)=x^2+xg^2(1)+g^''(2) and g(x)=f(1).x^2+xf'(x)+f''(x), then find f(x) and g(x).

Let f(x)=-4.sqrt(e^(1-x))+1+x+(x^(2))/(2)+(x^(3))/(3) . If g(x) is inverse of f(x) then the value of (1)/(g^(')(-(7)/(6))) is

If f(x)=4x-5 and g(x)=3^(x) , then f(g(2)) =

Let f (x,y)= x^(2) - y^(2) and g (x,y)=2xy. such that (f ( x,y))^(2) -(g (x,y))^(2)=1/2 and f (x,y) . G(x,y) =(sqrt3)/(4) Find the number of ordered pairs (x,y) ?

VK JAISWAL ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. If y ^(2) =4ax, then (d^(2) y)/(dx ^(2))=(ka ^(2))/( y ^(2)), where k ...

    Text Solution

    |

  2. The number of values of x , x ∈ [-2,3] where f (x) =[x ^(2)] sin (pix)...

    Text Solution

    |

  3. If f (x) is continous and differentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  4. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  5. Consider f(x) =x^(2)+ax+3 and g(x) =x+band F(x) = lim( n to oo) (f...

    Text Solution

    |

  6. Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f...

    Text Solution

    |

  7. If f (x) +2 f (1-x) =x ^(2) +2 AA x in R and f (x) is a differentiable...

    Text Solution

    |

  8. Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number o...

    Text Solution

    |

  9. If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))...

    Text Solution

    |

  10. f (x) =a cos (pix)+b, f'((1)/(2))=pi and int (1//2)^(3//2) f (x) dx =2...

    Text Solution

    |

  11. Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1...

    Text Solution

    |

  12. Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ...

    Text Solution

    |

  13. If y=3^(2 sin ^(-1)) then |((x ^(2) -1) y^('') +xy')/(y)| is equal to

    Text Solution

    |

  14. Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)...

    Text Solution

    |

  15. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  16. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |

  17. Let f (x) = x tan ^(-1) (x^(2)) + x^(4) Let f ^(k) (x) denotes k ^(th)...

    Text Solution

    |

  18. If x = cos theta and y = sin^(3) theta, then |(yd ^(2)y)/(dx ^(2))+((d...

    Text Solution

    |

  19. The value of x, x in (2,oo) where f (x) = sqrt(x sqrt(8x-16))+ sqrt(x-...

    Text Solution

    |

  20. The number of non differentiability of runction f (x) = min (|x| , {x}...

    Text Solution

    |