Home
Class 12
MATHS
int0^(1)(sin^(- 1)x)/x dx=...

`int_0^(1)(sin^(- 1)x)/x dx=`

A

`(pi)/(8) ln 2`

B

`(pi)/(4) ln 2`

C

`(pi)/(2 sqrt2) ln 2`

D

`(pi)/(2) ln 2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^1 \frac{\sin^{-1} x}{x} \, dx \), we can use a substitution method and integration by parts. Here’s a step-by-step solution: ### Step 1: Substitution Let \( t = \sin^{-1} x \). Then, we have: \[ x = \sin t \quad \text{and} \quad dx = \cos t \, dt \] The limits change as follows: - When \( x = 0 \), \( t = \sin^{-1}(0) = 0 \) - When \( x = 1 \), \( t = \sin^{-1}(1) = \frac{\pi}{2} \) ### Step 2: Rewrite the Integral Substituting these into the integral, we get: \[ I = \int_0^{\frac{\pi}{2}} \frac{t}{\sin t} \cos t \, dt \] This simplifies to: \[ I = \int_0^{\frac{\pi}{2}} t \cdot \frac{\cos t}{\sin t} \, dt = \int_0^{\frac{\pi}{2}} t \cot t \, dt \] ### Step 3: Integration by Parts Now, we will use integration by parts. Let: - \( u = t \) (thus \( du = dt \)) - \( dv = \cot t \, dt \) (thus \( v = \ln(\sin t) \)) Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \), we have: \[ I = \left[ t \ln(\sin t) \right]_0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} \ln(\sin t) \, dt \] ### Step 4: Evaluate the Boundary Terms Evaluating the boundary terms: - At \( t = \frac{\pi}{2} \), \( \sin\left(\frac{\pi}{2}\right) = 1 \) so \( \ln(1) = 0 \). - At \( t = 0 \), \( \sin(0) = 0 \) and \( t \ln(\sin t) \) approaches \( 0 \) as \( t \to 0 \) (using L'Hôpital's Rule). Thus, the boundary terms contribute \( 0 - 0 = 0 \). ### Step 5: Final Integral Now we have: \[ I = - \int_0^{\frac{\pi}{2}} \ln(\sin t) \, dt \] It is known that: \[ \int_0^{\frac{\pi}{2}} \ln(\sin t) \, dt = -\frac{\pi}{2} \ln(2) \] Therefore: \[ I = -\left(-\frac{\pi}{2} \ln(2)\right) = \frac{\pi}{2} \ln(2) \] ### Final Answer Thus, the value of the integral is: \[ \int_0^1 \frac{\sin^{-1} x}{x} \, dx = \frac{\pi}{2} \ln(2) \] ---
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|15 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|16 Videos
  • HYPERBOLA

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|6 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_0^1sin^(-1)x\ dx

int_(0)^(1) sin^(-1) x dx =(pi)/(2) -1

Evaluate : (i) int_(0)^(1)sin^(-1)xdx , (ii) int_(1)^(2)(lnx)/(x^(2))dx , (iii) int_(0)^(1)x^(2)sin^(-1)xdx .

Evaluate: int_0^(1)sin^(-1)((2x)/(1+x^2))dx

int_(0)^(1)(x sin^(-1)x)/(sqrt(1-x^(2)))dx

int_(0)^(1//2) (x sin^(-1)x)/(sqrt(1-x^(2)))dx=?

Evaluate: int_0^1sin^(-1)((2x)/(1+x^2))dx

Evaluate: int_0^1sin^(-1)((2x)/(1+x^2))dx

int_0^1 sin^-1((2x)/(1+x^2)) dx

The value of int_(-a)^a(cos^(- 1)x-sin^(- 1)sqrt(1-x^2))dx is (a>0) there int_0^acos^(- 1)x dx=A) is

VK JAISWAL ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. int0^(1)(sin^(- 1)x)/x dx=

    Text Solution

    |

  2. int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k (1)) ( sqrt(1...

    Text Solution

    |

  3. If int (0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then fi...

    Text Solution

    |

  4. int( (x^2+1)dx)/x

    Text Solution

    |

  5. If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) ...

    Text Solution

    |

  6. int( x^2+3)/(x^2+2)dx

    Text Solution

    |

  7. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  8. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  9. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2+1)))")")dx...

    Text Solution

    |

  10. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  11. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  12. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  13. int( x^3)/(x^2-3)dx

    Text Solution

    |

  14. If a continuous function f on [0,a] satisfies f(x)f(a-x)=1,agt0, then ...

    Text Solution

    |

  15. If {x} denotes the fractional part of x, then I = int (0) ^(100) (sqrt...

    Text Solution

    |

  16. int( x^3)/(x^2-2)dx

    Text Solution

    |

  17. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  18. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  19. Find the vlaur of lim (n to oo) (1)/(sqrtn)(1+ (1)/(sqrt2) +(1)/(sqrt3...

    Text Solution

    |

  20. The maximum value of int (-pi/2) ^((3pi)/2) sin x. f (x) dx, subject t...

    Text Solution

    |

  21. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |