Home
Class 12
MATHS
If f'(x) = f(x)+ int (0)^(1)f (x) dx and...

If `f'(x) = f(x)+ int _(0)^(1)f (x)` dx and given `f (0) =1,` then `int f (x) dx` is equal to :

A

`(2)/(3-e) e ^(x) +((3-e)/(1-e))x+C`

B

`(2)/(3-e ) e ^(x) +((1-e)/(3-e))x +C`

C

`(3)/(2-e)e ^(x)+ ((1+e)/(3+e))x +C`

D

`(2)/(2-e) e ^(x) +((1-e)/(3+e))x +C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given differential equation: \[ f'(x) = f(x) + \int_0^1 f(x) \, dx \] and the initial condition: \[ f(0) = 1. \] ### Step 1: Differentiate both sides with respect to \( x \) Differentiating both sides gives us: \[ f''(x) = f'(x) + 0. \] The integral \( \int_0^1 f(x) \, dx \) is a constant with respect to \( x \), so its derivative is zero. ### Step 2: Substitute \( f'(x) \) From the original equation, we can substitute \( f'(x) \): \[ f''(x) = f(x) + \int_0^1 f(x) \, dx. \] ### Step 3: Set \( f'(x) = t \) Let \( f'(x) = t \). Then \( f''(x) = \frac{dt}{dx} \). ### Step 4: Rewrite the equation Using our substitution, we rewrite the equation as: \[ \frac{dt}{dx} = t + \int_0^1 f(x) \, dx. \] ### Step 5: Solve the differential equation This is a first-order linear differential equation. We can separate variables: \[ \frac{dt}{t + C} = dx, \] where \( C = \int_0^1 f(x) \, dx \). ### Step 6: Integrate both sides Integrating both sides gives: \[ \ln |t + C| = x + K, \] where \( K \) is a constant of integration. ### Step 7: Solve for \( t \) Exponentiating both sides yields: \[ t + C = e^{x + K} \Rightarrow t = e^{x + K} - C. \] ### Step 8: Substitute back for \( f'(x) \) Since \( t = f'(x) \), we have: \[ f'(x) = e^{x + K} - C. \] ### Step 9: Integrate to find \( f(x) \) Integrating \( f'(x) \): \[ f(x) = \int (e^{x + K} - C) \, dx = e^{x + K} - Cx + D, \] where \( D \) is another constant of integration. ### Step 10: Use the initial condition Using the initial condition \( f(0) = 1 \): \[ f(0) = e^{K} - 0 + D = 1 \Rightarrow D = 1 - e^{K}. \] ### Step 11: Final expression for \( f(x) \) Thus, we can express \( f(x) \): \[ f(x) = e^{x + K} - Cx + (1 - e^{K}). \] ### Step 12: Find \( \int f(x) \, dx \) Now we need to find \( \int f(x) \, dx \): \[ \int f(x) \, dx = \int (e^{x + K} - Cx + (1 - e^{K})) \, dx. \] This can be computed as: \[ \int e^{x + K} \, dx - C \int x \, dx + \int (1 - e^{K}) \, dx. \] ### Final Result The final expression for \( \int f(x) \, dx \) will depend on the constants \( C \) and \( K \), which can be determined based on the context or additional conditions provided.
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|15 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|16 Videos
  • HYPERBOLA

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|6 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(a)f(x)dx

If f'(x)=f(x)+ int_(0)^(1)f(x)dx , given f(0)=1 , then the value of f(log_(e)2) is

If int f(x)dx=F(x), then intx^3f(x^2)dx is equal to :

If int_0^af(2a-x)dx=m and int_0^af(x)dx=n, then int_0^(2a) f(x) dx is equal to

If f(a+x)=f(x), then int_(0)^(na) f(x)dx is equal to (n in N)

IF f(x+f(y))=f(x)+y AA x, y in R and f(0)=1 , then int_(0)^(10)f(10-x)dx is equal to

If f(0) = 1 , f(2) = 3, f'(2) = 5 and f'(0) is finite, then int_(0)^(1)x. f^''(2x) dx is equal to

If f(2a-x)=-f(x), prove that int_0^(2a)f(x)dx=0

Let a gt 0 and f(x) is monotonic increase such that f(0)=0 and f(a)=b, "then " int_(0)^(a) f(x) dx +int_(0)^(b) f^(-1) (x) dx is equal to

int e^x {f(x)-f'(x)}dx= phi(x) , then int e^x f(x) dx is

VK JAISWAL ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. If f'(x) = f(x)+ int (0)^(1)f (x) dx and given f (0) =1, then int f (x...

    Text Solution

    |

  2. int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k (1)) ( sqrt(1...

    Text Solution

    |

  3. If int (0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then fi...

    Text Solution

    |

  4. int( (x^2+1)dx)/x

    Text Solution

    |

  5. If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) ...

    Text Solution

    |

  6. int( x^2+3)/(x^2+2)dx

    Text Solution

    |

  7. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  8. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  9. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2+1)))")")dx...

    Text Solution

    |

  10. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  11. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  12. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  13. int( x^3)/(x^2-3)dx

    Text Solution

    |

  14. If a continuous function f on [0,a] satisfies f(x)f(a-x)=1,agt0, then ...

    Text Solution

    |

  15. If {x} denotes the fractional part of x, then I = int (0) ^(100) (sqrt...

    Text Solution

    |

  16. int( x^3)/(x^2-2)dx

    Text Solution

    |

  17. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  18. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  19. Find the vlaur of lim (n to oo) (1)/(sqrtn)(1+ (1)/(sqrt2) +(1)/(sqrt3...

    Text Solution

    |

  20. The maximum value of int (-pi/2) ^((3pi)/2) sin x. f (x) dx, subject t...

    Text Solution

    |

  21. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |