Home
Class 12
MATHS
If int e ^(x) ((2tan x)/(1+tan x)+ cosec...

If `int e ^(x) ((2tan x)/(1+tan x)+ cosec ^(2)(x+(pi)/(4)))dx =e ^(x). g(x)+k,` then `g ((5pi)/(4))=`

A

0

B

1

C

`-1`

D

`2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral given in the question and find the function \( g(x) \) at \( x = \frac{5\pi}{4} \). ### Step-by-Step Solution: 1. **Set Up the Integral**: We start with the integral: \[ I = \int e^x \left( \frac{2 \tan x}{1 + \tan x} + \csc^2\left(x + \frac{\pi}{4}\right) \right) dx \] 2. **Simplify the Cosecant Term**: Recall that \( \csc^2(x + \frac{\pi}{4}) = \frac{1}{\sin^2(x + \frac{\pi}{4})} \). Using the sine addition formula: \[ \sin\left(x + \frac{\pi}{4}\right) = \sin x \cos\frac{\pi}{4} + \cos x \sin\frac{\pi}{4} = \frac{\sin x + \cos x}{\sqrt{2}} \] Thus, \[ \csc^2\left(x + \frac{\pi}{4}\right) = \frac{2}{\sin^2 x + \cos^2 x + 2\sin x \cos x} = \frac{2}{1 + \sqrt{2} \sin(2x)} \] 3. **Combine Terms**: Now, we can rewrite the integral: \[ I = \int e^x \left( \frac{2 \tan x}{1 + \tan x} + \frac{2}{\sin^2 x + \cos^2 x + 2\sin x \cos x} \right) dx \] 4. **Let \( f(x) = \frac{2 \sin x}{\sin x + \cos x} \)**: We define: \[ f(x) = \frac{2 \sin x}{\sin x + \cos x} \] We need to find \( f'(x) \). 5. **Differentiate \( f(x) \)**: Using the quotient rule: \[ f'(x) = \frac{(2 \cos x)(\sin x + \cos x) - (2 \sin x)(\cos x - \sin x)}{(\sin x + \cos x)^2} \] Simplifying gives: \[ f'(x) = \frac{2}{\sin x + \cos x} \] 6. **Integrate**: The integral can be expressed using integration by parts: \[ I = e^x f(x) + C \] 7. **Identify \( g(x) \)**: From the equation \( I = e^x g(x) + k \), we find that \( g(x) = f(x) \). 8. **Evaluate \( g\left(\frac{5\pi}{4}\right) \)**: Now we need to evaluate: \[ g\left(\frac{5\pi}{4}\right) = \frac{2 \sin\left(\frac{5\pi}{4}\right)}{\sin\left(\frac{5\pi}{4}\right) + \cos\left(\frac{5\pi}{4}\right)} \] Since \( \sin\left(\frac{5\pi}{4}\right) = -\frac{1}{\sqrt{2}} \) and \( \cos\left(\frac{5\pi}{4}\right) = -\frac{1}{\sqrt{2}} \): \[ g\left(\frac{5\pi}{4}\right) = \frac{2 \left(-\frac{1}{\sqrt{2}}\right)}{-\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}} = \frac{-\frac{2}{\sqrt{2}}}{-\frac{2}{\sqrt{2}}} = 1 \] ### Final Answer: Thus, the value of \( g\left(\frac{5\pi}{4}\right) \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|15 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|16 Videos
  • HYPERBOLA

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|6 Videos

Similar Questions

Explore conceptually related problems

int e^(2x) " (tan x+1)"^(2) dx

int (dx)/(tan x+ cot x+ sec x+ cosec x)

int_(0)^(pi//4) e^(x) (tan x+ sec^(2)x) dx

int_(0)^(pi//2) " 1/cosec "(x-(pi)/(3)) dx=?

If int (cosec ^(2)x-2010)/(cos ^(2010)x)dx = =(f (x))/((g (x ))^(2010))+C, where f ((pi)/(4))=1, then the number of solution of the equation (f(x))/(g (x))={x} in [0,2pi] is/are: (where {.} represents fractional part function)

Evaluate: int e^(x) (1 + tan x + tan^(2)x)dx

If f(x)= sin (arctan x), g(x) = tan (arcsin x), and 0 le x lt (pi)/(2) , then f(g((pi)/(10)))=

int e^(x). "(cot x- cosec"^(2)" x) dx "

int_(0)^(pi//4) cot x. " cosec"^(2) x dx

If y = tan ^(-1) (sec x + tan x) , " find " (d^(2) y)/( dx^(2)) at x = (pi)/(4)

VK JAISWAL ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. If int e ^(x) ((2tan x)/(1+tan x)+ cosec ^(2)(x+(pi)/(4)))dx =e ^(x). ...

    Text Solution

    |

  2. int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k (1)) ( sqrt(1...

    Text Solution

    |

  3. If int (0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then fi...

    Text Solution

    |

  4. int( (x^2+1)dx)/x

    Text Solution

    |

  5. If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) ...

    Text Solution

    |

  6. int( x^2+3)/(x^2+2)dx

    Text Solution

    |

  7. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  8. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  9. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2+1)))")")dx...

    Text Solution

    |

  10. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  11. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  12. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  13. int( x^3)/(x^2-3)dx

    Text Solution

    |

  14. If a continuous function f on [0,a] satisfies f(x)f(a-x)=1,agt0, then ...

    Text Solution

    |

  15. If {x} denotes the fractional part of x, then I = int (0) ^(100) (sqrt...

    Text Solution

    |

  16. int( x^3)/(x^2-2)dx

    Text Solution

    |

  17. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  18. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  19. Find the vlaur of lim (n to oo) (1)/(sqrtn)(1+ (1)/(sqrt2) +(1)/(sqrt3...

    Text Solution

    |

  20. The maximum value of int (-pi/2) ^((3pi)/2) sin x. f (x) dx, subject t...

    Text Solution

    |

  21. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |