Home
Class 12
MATHS
int {((lnx-1))/(1+(lnx)^2)}^2dx is equal...

`int {((lnx-1))/(1+(lnx)^2)}^2`dx is equal to

A

`(x )/(x ^(2)+1)+C`

B

`(ln x )/((ln x )^(2)+1)+C`

C

`(x)/(1+ (ln x )^(2))+C`

D

`e ^(x)((x)/(x ^(2) +1))+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \left( \frac{\ln x - 1}{1 + (\ln x)^2} \right)^2 \, dx \), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \left( \frac{\ln x - 1}{1 + (\ln x)^2} \right)^2 \, dx \] ### Step 2: Expand the Square Next, we expand the square in the integrand: \[ I = \int \frac{(\ln x - 1)^2}{(1 + (\ln x)^2)^2} \, dx \] This can be simplified to: \[ I = \int \frac{\ln^2 x - 2\ln x + 1}{(1 + (\ln x)^2)^2} \, dx \] ### Step 3: Split the Integral We can split the integral into two parts: \[ I = \int \frac{\ln^2 x}{(1 + (\ln x)^2)^2} \, dx - 2 \int \frac{\ln x}{(1 + (\ln x)^2)^2} \, dx + \int \frac{1}{(1 + (\ln x)^2)^2} \, dx \] ### Step 4: Substitution Now, we will use the substitution \( t = \ln x \). Then, \( x = e^t \) and \( dx = e^t dt \). The integral becomes: \[ I = \int \frac{t^2 e^t}{(1 + t^2)^2} \, dt - 2 \int \frac{t e^t}{(1 + t^2)^2} \, dt + \int \frac{e^t}{(1 + t^2)^2} \, dt \] ### Step 5: Factor Out \( e^t \) We can factor out \( e^t \) from the integrals: \[ I = e^t \left( \int \frac{t^2}{(1 + t^2)^2} \, dt - 2 \int \frac{t}{(1 + t^2)^2} \, dt + \int \frac{1}{(1 + t^2)^2} \, dt \right) \] ### Step 6: Recognize the Derivative Notice that the derivative of \( \frac{1}{1 + t^2} \) is \( -\frac{2t}{(1 + t^2)^2} \). Thus, we can use integration by parts or recognize that: \[ \int e^t f(t) \, dt = e^t f(t) + C \] where \( f(t) \) is a function whose derivative appears in the integrand. ### Step 7: Final Result After evaluating the integrals and substituting back \( t = \ln x \), we get: \[ I = \frac{x}{1 + (\ln x)^2} + C \] ### Conclusion Thus, the final result of the integral is: \[ \int \left( \frac{\ln x - 1}{1 + (\ln x)^2} \right)^2 \, dx = \frac{x}{1 + (\ln x)^2} + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|15 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|16 Videos
  • HYPERBOLA

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|6 Videos

Similar Questions

Explore conceptually related problems

int((lnx-1)/((lnx)^(2)+1))^2dx is equal to

Read the following passages and answer the following questions (7-9) Consider the integrals of the form l=inte^(x)(f(x)+f'(x))dx By product rule considering e^(x)f(x) as first integral and e^(x)f'(x) as second one, we get l=e^(x)f(x)-int(f(x)+f'(x))dx=e^(x)f(x)+c int((1)/(lnx)-(1)/((lnx)^(2)))dx is equal to

int(e^(x)(x-1)(x-lnx))/(x^(2))dx is equal to

int_(-1)^(1)(x^2+1)dx is equal to

int(1)/(1+3 sin ^(2)x)dx is equal to

int("In"((x-1)/(x+1)))/(x^(2)-1)dx is equal to

int(dx)/((x^3-1)^(2/3)x^2) is equal to

If int_(0)^(1) (e^(x))/( 1+x) dx = k , then int_(0)^(1) (e^(x))/( (1+x)^(2)) dx is equal to

int ( x^(2) + 1)/( x^(2) - 1)dx is equal to

int_2^4 1/x dx is equal to

VK JAISWAL ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. int {((lnx-1))/(1+(lnx)^2)}^2dx is equal to

    Text Solution

    |

  2. int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k (1)) ( sqrt(1...

    Text Solution

    |

  3. If int (0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then fi...

    Text Solution

    |

  4. int( (x^2+1)dx)/x

    Text Solution

    |

  5. If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) ...

    Text Solution

    |

  6. int( x^2+3)/(x^2+2)dx

    Text Solution

    |

  7. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  8. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  9. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2+1)))")")dx...

    Text Solution

    |

  10. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  11. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  12. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  13. int( x^3)/(x^2-3)dx

    Text Solution

    |

  14. If a continuous function f on [0,a] satisfies f(x)f(a-x)=1,agt0, then ...

    Text Solution

    |

  15. If {x} denotes the fractional part of x, then I = int (0) ^(100) (sqrt...

    Text Solution

    |

  16. int( x^3)/(x^2-2)dx

    Text Solution

    |

  17. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  18. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  19. Find the vlaur of lim (n to oo) (1)/(sqrtn)(1+ (1)/(sqrt2) +(1)/(sqrt3...

    Text Solution

    |

  20. The maximum value of int (-pi/2) ^((3pi)/2) sin x. f (x) dx, subject t...

    Text Solution

    |

  21. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |