Home
Class 12
MATHS
The value of the definite integral int...

The value of the definite integral `int e^(-x^4) (2+ln(x+sqrt(x^2+1))+5x^3-8x^4)dx` is equal to

A

4e

B

`4/e`

C

`2e`

D

`2/e`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the definite integral \[ I = \int_{-1}^{1} e^{-x^4} \left( 2 + \ln(x + \sqrt{x^2 + 1}) + 5x^3 - 8x^4 \right) dx, \] we can break it down into simpler parts. ### Step 1: Break Down the Integral We can express \(I\) as the sum of several integrals: \[ I = \int_{-1}^{1} e^{-x^4} \cdot 2 \, dx + \int_{-1}^{1} e^{-x^4} \ln(x + \sqrt{x^2 + 1}) \, dx + \int_{-1}^{1} 5x^3 e^{-x^4} \, dx - \int_{-1}^{1} 8x^4 e^{-x^4} \, dx. \] ### Step 2: Analyze the Functions 1. **First Integral**: The function \(e^{-x^4}\) is even, and the constant \(2\) is also even. Therefore, the first integral is non-zero. 2. **Second Integral**: We need to check if \(\ln(x + \sqrt{x^2 + 1})\) is odd. - For \(f(x) = \ln(x + \sqrt{x^2 + 1})\), we find \(f(-x) = \ln(-x + \sqrt{x^2 + 1})\). - It can be shown that \(f(-x) = -f(x)\), confirming that this function is odd. 3. **Third Integral**: The term \(5x^3\) is odd, hence the integral over a symmetric interval around zero will be zero. 4. **Fourth Integral**: The term \(8x^4\) is even, and thus this integral will not be zero. ### Step 3: Evaluate the Non-Zero Integrals Now we can simplify \(I\): \[ I = \int_{-1}^{1} 2 e^{-x^4} \, dx - \int_{-1}^{1} 8x^4 e^{-x^4} \, dx. \] ### Step 4: Use Symmetry Using the property of definite integrals for even functions, we can rewrite: \[ I = 2 \int_{0}^{1} 2 e^{-x^4} \, dx - 2 \int_{0}^{1} 8x^4 e^{-x^4} \, dx. \] This simplifies to: \[ I = 4 \int_{0}^{1} e^{-x^4} \, dx - 16 \int_{0}^{1} x^4 e^{-x^4} \, dx. \] ### Step 5: Substitution for the Second Integral Let \(u = x^4\), then \(du = 4x^3 dx\) or \(dx = \frac{du}{4x^3}\). The limits change from \(0\) to \(1\) in \(x\) to \(0\) to \(1\) in \(u\). Thus, the second integral becomes: \[ \int_{0}^{1} x^4 e^{-x^4} \, dx = \frac{1}{4} \int_{0}^{1} e^{-u} \, du = \frac{1}{4} \left[-e^{-u}\right]_{0}^{1} = \frac{1}{4}(1 - e^{-1}). \] ### Step 6: Substitute Back Now substituting back into our expression for \(I\): \[ I = 4 \int_{0}^{1} e^{-x^4} \, dx - 16 \cdot \frac{1}{4}(1 - e^{-1}) = 4 \int_{0}^{1} e^{-x^4} \, dx - 4(1 - e^{-1}). \] ### Step 7: Final Evaluation The integral \(\int_{0}^{1} e^{-x^4} \, dx\) is a known integral, but for the purposes of this problem, we can leave it as is. Thus, the final expression for \(I\) is: \[ I = 4 \int_{0}^{1} e^{-x^4} \, dx - 4 + 4e^{-1}. \] ### Conclusion The value of the definite integral is given by: \[ I = 4 \left( \int_{0}^{1} e^{-x^4} \, dx + e^{-1} - 1 \right). \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|15 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|16 Videos
  • HYPERBOLA

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|6 Videos

Similar Questions

Explore conceptually related problems

The value of the definite integral int _(0) ^(10) ((x-5) +(x-5)^(2) +(c-5)^(3)) dx is:

Evaluate the definite integrals int1 2(4x^3-5x^2+6x+9)dx

The value of the definite integral int_(0)^(pi//3) ln (1+ sqrt3tan x )dx equals

Evaluate the definite integrals int_0^1(2x+3)/(5x^2+1)dx

Evaluate the definite integrals int_1^2(4x^3-5x^2+6x+9)dx

The value of the definite integral I=int_(-1)^(1)ln((2-sin^(3)x)/(2+sin^(3)x))dx is equal to

The value of the definite integral int_(0)^(2) (sqrt(1+x ^(3))+""^(3) sqrt(x ^(2)+ 2x)) dx is :

Evaluate the following definite integral: int_1^4(x^2+x)/(sqrt(2x+1))dx

Evaluate the following definite integral: int_0^4 1/(sqrt(4x-x^2))dx

Evaluate the definite integrals int_0^1(2x+3"")/(5x^2+1)dx

VK JAISWAL ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. The value of the definite integral int e^(-x^4) (2+ln(x+sqrt(x^2+1))...

    Text Solution

    |

  2. int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k (1)) ( sqrt(1...

    Text Solution

    |

  3. If int (0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then fi...

    Text Solution

    |

  4. int( (x^2+1)dx)/x

    Text Solution

    |

  5. If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) ...

    Text Solution

    |

  6. int( x^2+3)/(x^2+2)dx

    Text Solution

    |

  7. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  8. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  9. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2+1)))")")dx...

    Text Solution

    |

  10. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  11. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  12. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  13. int( x^3)/(x^2-3)dx

    Text Solution

    |

  14. If a continuous function f on [0,a] satisfies f(x)f(a-x)=1,agt0, then ...

    Text Solution

    |

  15. If {x} denotes the fractional part of x, then I = int (0) ^(100) (sqrt...

    Text Solution

    |

  16. int( x^3)/(x^2-2)dx

    Text Solution

    |

  17. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  18. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  19. Find the vlaur of lim (n to oo) (1)/(sqrtn)(1+ (1)/(sqrt2) +(1)/(sqrt3...

    Text Solution

    |

  20. The maximum value of int (-pi/2) ^((3pi)/2) sin x. f (x) dx, subject t...

    Text Solution

    |

  21. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |