Home
Class 12
MATHS
int- 10^0 (|(2[x])/(3x-[x]|)/(2[x])/(3x-...

`int_- 10^0 (|(2[x])/(3x-[x]|)/(2[x])/(3x-[x]))dx` is equal to (where [*] denotes greatest integer function.) is equal to (where [*] denotes greatest integer function.)

A

`28/3`

B

`1/3`

C

`0`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int_{-10}^{0} \frac{|2[x]|}{3x - [x]} \, dx, \] where \([x]\) denotes the greatest integer function, we will follow these steps: ### Step 1: Understanding the Greatest Integer Function For \(x < 0\), the greatest integer function \([x]\) is equal to \(-1\) for \(-1 < x < 0\), \(-2\) for \(-2 < x < -1\), \(-3\) for \(-3 < x < -2\), and so on. ### Step 2: Splitting the Integral We will split the integral into segments based on the intervals defined by the greatest integer function: 1. From \(-10\) to \(-3\) 2. From \(-3\) to \(-2\) 3. From \(-2\) to \(-1\) 4. From \(-1\) to \(0\) ### Step 3: Evaluating Each Segment 1. **For \(x \in [-10, -3)\)**: Here, \([x] = -4\). \[ \int_{-10}^{-3} \frac{|2[-4]|}{3x - [-4]} \, dx = \int_{-10}^{-3} \frac{8}{3x + 4} \, dx \] 2. **For \(x \in [-3, -2)\)**: Here, \([x] = -3\). \[ \int_{-3}^{-2} \frac{|2[-3]|}{3x - [-3]} \, dx = \int_{-3}^{-2} \frac{6}{3x + 3} \, dx \] 3. **For \(x \in [-2, -1)\)**: Here, \([x] = -2\). \[ \int_{-2}^{-1} \frac{|2[-2]|}{3x - [-2]} \, dx = \int_{-2}^{-1} \frac{4}{3x + 2} \, dx \] 4. **For \(x \in [-1, 0)\)**: Here, \([x] = -1\). \[ \int_{-1}^{0} \frac{|2[-1]|}{3x - [-1]} \, dx = \int_{-1}^{0} \frac{2}{3x + 1} \, dx \] ### Step 4: Calculating Each Integral 1. **Integral from \(-10\) to \(-3\)**: \[ \int_{-10}^{-3} \frac{8}{3x + 4} \, dx = \left[ \frac{8}{3} \ln |3x + 4| \right]_{-10}^{-3} \] 2. **Integral from \(-3\) to \(-2\)**: \[ \int_{-3}^{-2} \frac{6}{3x + 3} \, dx = \left[ 2 \ln |3x + 3| \right]_{-3}^{-2} \] 3. **Integral from \(-2\) to \(-1\)**: \[ \int_{-2}^{-1} \frac{4}{3x + 2} \, dx = \left[ \frac{4}{3} \ln |3x + 2| \right]_{-2}^{-1} \] 4. **Integral from \(-1\) to \(0\)**: \[ \int_{-1}^{0} \frac{2}{3x + 1} \, dx = \left[ \frac{2}{3} \ln |3x + 1| \right]_{-1}^{0} \] ### Step 5: Summing the Results After calculating each integral, we sum them to find the total value of the original integral. ### Final Answer The final result of the integral is: \[ \int_{-10}^{0} \frac{|2[x]|}{3x - [x]} \, dx = \frac{28}{3}. \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|15 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|16 Videos
  • HYPERBOLA

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|6 Videos

Similar Questions

Explore conceptually related problems

Lt_(xto2) [x] where [*] denotes the greatest integer function is equal to

x→1 lim ​ (1−x+[x−1]+[1−x]) is equal to (where [.] denotes greatest integer function)

Period of f(x) = sgn([x] +[-x]) is equal to (where [.] denotes greatest integer function

Period of f(x) = sgn([x] +[-x]) is equal to (where [.] denotes greatest integer function

The value of int_0^([x]) 2^x/(2^([x])) dx is equal to (where, [.] denotes the greatest integer function)

int_(-1)^(2)[([x])/(1+x^(2))]dx , where [.] denotes the greatest integer function, is equal to

The function, f(x)=[|x|]-|[x]| where [] denotes greatest integer function:

The range of the function f(x)=2+x-[x-3] is, (where [.] denotes greatest integer function):

lim_(xto1) (xsin(x-[x]))/(x-1) , where [.] denotes the greatest integer function, is equal to

int_(0)^([x]//3) (8^(x))/(2^([3x]))dx where [.] denotes the greatest integer function, is equal to

VK JAISWAL ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. int- 10^0 (|(2[x])/(3x-[x]|)/(2[x])/(3x-[x]))dx is equal to (where [*...

    Text Solution

    |

  2. int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k (1)) ( sqrt(1...

    Text Solution

    |

  3. If int (0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then fi...

    Text Solution

    |

  4. int( (x^2+1)dx)/x

    Text Solution

    |

  5. If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) ...

    Text Solution

    |

  6. int( x^2+3)/(x^2+2)dx

    Text Solution

    |

  7. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  8. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  9. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2+1)))")")dx...

    Text Solution

    |

  10. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  11. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  12. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  13. int( x^3)/(x^2-3)dx

    Text Solution

    |

  14. If a continuous function f on [0,a] satisfies f(x)f(a-x)=1,agt0, then ...

    Text Solution

    |

  15. If {x} denotes the fractional part of x, then I = int (0) ^(100) (sqrt...

    Text Solution

    |

  16. int( x^3)/(x^2-2)dx

    Text Solution

    |

  17. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  18. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  19. Find the vlaur of lim (n to oo) (1)/(sqrtn)(1+ (1)/(sqrt2) +(1)/(sqrt3...

    Text Solution

    |

  20. The maximum value of int (-pi/2) ^((3pi)/2) sin x. f (x) dx, subject t...

    Text Solution

    |

  21. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |