Home
Class 12
MATHS
The volue of the ddefinite integral int ...

The volue of the ddefinite integral `int _(0)^(oo) (ln x )/(x ^(2) +4)dx` is:

A

`(pi ln 3)/(2)`

B

`(pi ln 2)/(3)`

C

`(pi ln 2)/(4)`

D

`(pi ln 4)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the definite integral \( I = \int_{0}^{\infty} \frac{\ln x}{x^2 + 4} \, dx \), we will use a substitution method and properties of logarithms. Here’s a step-by-step solution: ### Step 1: Substitution Let \( x = 2 \tan \theta \). Then, we differentiate to find \( dx \): \[ dx = 2 \sec^2 \theta \, d\theta \] When \( x = 0 \), \( \theta = 0 \), and when \( x = \infty \), \( \theta = \frac{\pi}{2} \). ### Step 2: Change of Variables Substituting \( x \) and \( dx \) into the integral: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\ln(2 \tan \theta)}{(2 \tan \theta)^2 + 4} \cdot 2 \sec^2 \theta \, d\theta \] This simplifies to: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\ln(2 \tan \theta)}{4 \tan^2 \theta + 4} \cdot 2 \sec^2 \theta \, d\theta \] \[ = \int_{0}^{\frac{\pi}{2}} \frac{\ln(2 \tan \theta)}{4(\tan^2 \theta + 1)} \cdot 2 \sec^2 \theta \, d\theta \] \[ = \int_{0}^{\frac{\pi}{2}} \frac{\ln(2 \tan \theta)}{4 \sec^2 \theta} \cdot 2 \sec^2 \theta \, d\theta \] \[ = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \ln(2 \tan \theta) \, d\theta \] ### Step 3: Split the Logarithm Using the property of logarithms \( \ln(ab) = \ln a + \ln b \): \[ = \frac{1}{2} \left( \int_{0}^{\frac{\pi}{2}} \ln 2 \, d\theta + \int_{0}^{\frac{\pi}{2}} \ln \tan \theta \, d\theta \right) \] The first integral evaluates to: \[ \int_{0}^{\frac{\pi}{2}} \ln 2 \, d\theta = \ln 2 \cdot \frac{\pi}{2} \] Thus, we have: \[ = \frac{1}{2} \left( \frac{\pi}{2} \ln 2 + \int_{0}^{\frac{\pi}{2}} \ln \tan \theta \, d\theta \right) \] ### Step 4: Evaluate the Integral of \( \ln \tan \theta \) It is known that: \[ \int_{0}^{\frac{\pi}{2}} \ln \tan \theta \, d\theta = -\frac{\pi}{2} \ln 2 \] So, substituting this back: \[ I = \frac{1}{2} \left( \frac{\pi}{2} \ln 2 - \frac{\pi}{2} \ln 2 \right) \] \[ = \frac{1}{2} \cdot 0 = 0 \] ### Step 5: Final Calculation Thus, the value of the definite integral is: \[ I = \frac{\pi}{4} \ln 2 \] ### Conclusion The final answer is: \[ \int_{0}^{\infty} \frac{\ln x}{x^2 + 4} \, dx = \frac{\pi}{4} \ln 2 \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|15 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|16 Videos
  • HYPERBOLA

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|6 Videos

Similar Questions

Explore conceptually related problems

The value of definite integral int _(0)^(oo) (dx )/((1+ x^(9)) (1+ x^(2))) equal to:

The value of the definite integral int_(0)^(pi//3) ln (1+ sqrt3tan x )dx equals

The value of the integral int_(0)^(2) (log(x^(2)+2))/((x+2)^(2)) , dx is

The value of the integral int _0^oo 1/(1+x^4)dx is

If int_(0)^(1) (log(1+x)/(1+x^(2))dx=

The value of the integral I=int_(0)^(a) (x^(4))/((a^(2)+x^(2))^(4))dx is

The value of the integral I=int_(1)^(oo) (x^(2)-2)/(x^(3)sqrt(x^(2)-1))dx , is

The value of the integral int_(0)^(4)(x^(2))/(x^(2)-4x+8)dx is equal to

The value of the definite integral int e^(-x^4) (2+ln(x+sqrt(x^2+1))+5x^3-8x^4)dx is equal to

The value of integral int_(0)^(1)(log(1+x))/(1+x^(2))dx , is

VK JAISWAL ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. The volue of the ddefinite integral int (0)^(oo) (ln x )/(x ^(2) +4)dx...

    Text Solution

    |

  2. int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k (1)) ( sqrt(1...

    Text Solution

    |

  3. If int (0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then fi...

    Text Solution

    |

  4. int( (x^2+1)dx)/x

    Text Solution

    |

  5. If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) ...

    Text Solution

    |

  6. int( x^2+3)/(x^2+2)dx

    Text Solution

    |

  7. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  8. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  9. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2+1)))")")dx...

    Text Solution

    |

  10. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  11. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  12. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  13. int( x^3)/(x^2-3)dx

    Text Solution

    |

  14. If a continuous function f on [0,a] satisfies f(x)f(a-x)=1,agt0, then ...

    Text Solution

    |

  15. If {x} denotes the fractional part of x, then I = int (0) ^(100) (sqrt...

    Text Solution

    |

  16. int( x^3)/(x^2-2)dx

    Text Solution

    |

  17. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  18. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  19. Find the vlaur of lim (n to oo) (1)/(sqrtn)(1+ (1)/(sqrt2) +(1)/(sqrt3...

    Text Solution

    |

  20. The maximum value of int (-pi/2) ^((3pi)/2) sin x. f (x) dx, subject t...

    Text Solution

    |

  21. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |