Home
Class 12
MATHS
The value of lim ( x to (pi)/(4))(int(2 ...

The value of `lim _( x to (pi)/(4))(int_(2 ) ^(cosec ^(2)x)tg (t )dt)/(x ^(2)-(pi^(2))/(16))` is:

A

`(2)/(pi) g (2)`

B

`-(4)/(pi) g (2)`

C

`-(16)/(pi) g (2)`

D

`(16)/(pi) g (2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to \frac{\pi}{4}} \frac{\int_{2}^{\csc^2 x} \tan(t) \, dt}{x^2 - \frac{\pi^2}{16}}, \] we start by evaluating the expression as \( x \) approaches \( \frac{\pi}{4} \). ### Step 1: Evaluate the denominator First, we calculate the denominator: \[ x^2 - \frac{\pi^2}{16}. \] Substituting \( x = \frac{\pi}{4} \): \[ \left(\frac{\pi}{4}\right)^2 - \frac{\pi^2}{16} = \frac{\pi^2}{16} - \frac{\pi^2}{16} = 0. \] ### Step 2: Evaluate the numerator Next, we evaluate the numerator: \[ \int_{2}^{\csc^2\left(\frac{\pi}{4}\right)} \tan(t) \, dt. \] Since \( \csc\left(\frac{\pi}{4}\right) = \sqrt{2} \), we have: \[ \csc^2\left(\frac{\pi}{4}\right) = 2. \] Thus, the integral becomes: \[ \int_{2}^{2} \tan(t) \, dt = 0. \] ### Step 3: Form of the limit Now we have both the numerator and denominator approaching 0: \[ \lim_{x \to \frac{\pi}{4}} \frac{0}{0}. \] This indicates that we can apply L'Hôpital's Rule. ### Step 4: Apply L'Hôpital's Rule We differentiate the numerator and the denominator with respect to \( x \). **Numerator:** Using the Fundamental Theorem of Calculus, we differentiate: \[ \frac{d}{dx} \left( \int_{2}^{\csc^2 x} \tan(t) \, dt \right) = \tan(\csc^2 x) \cdot \frac{d}{dx}(\csc^2 x). \] Now, we find \( \frac{d}{dx}(\csc^2 x) \): \[ \frac{d}{dx}(\csc^2 x) = 2 \csc^2 x \cdot (-\csc x \cot x) = -2 \csc^3 x \cot x. \] Thus, the derivative of the numerator is: \[ \tan(\csc^2 x) \cdot (-2 \csc^3 x \cot x). \] **Denominator:** The derivative of the denominator is: \[ \frac{d}{dx} \left( x^2 - \frac{\pi^2}{16} \right) = 2x. \] ### Step 5: Evaluate the limit again Now we apply the limit again: \[ \lim_{x \to \frac{\pi}{4}} \frac{-2 \tan(\csc^2 x) \csc^3 x \cot x}{2x}. \] Substituting \( x = \frac{\pi}{4} \): - \( \csc^2\left(\frac{\pi}{4}\right) = 2 \) - \( \tan(2) \) and \( \cot\left(\frac{\pi}{4}\right) = 1 \) - \( \csc\left(\frac{\pi}{4}\right) = \sqrt{2} \) Thus, we have: \[ \lim_{x \to \frac{\pi}{4}} \frac{-2 \tan(2) \cdot (\sqrt{2})^3 \cdot 1}{2 \cdot \frac{\pi}{4}} = \frac{-8 \tan(2)}{\frac{\pi}{2}} = \frac{-16 \tan(2)}{\pi}. \] ### Final Result Thus, the value of the limit is: \[ \frac{-16 \tan(2)}{\pi}. \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|15 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|16 Videos
  • HYPERBOLA

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|6 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr(pi)/(4)) (int_(2)^(sec^(2)x)f(t)dt)/(x^(2-)(pi^(2))/(16)) is equal to

Evaluate, lim_(xto(pi//6)) (cot^(2)x-3)/("cosec"x-2)

The value of lim_(xrarr0) (int_(0)^(x^2)sec^2t dt)/(x sin x) dx , is

int_(-pi//4)^(pi//4) "cosec"^(2) x dx

int_(pi/3)^(pi/2) cosec x dx=?

lim_(x to 0)(int_(0)^(x^(2))(tan^(-1)t)dt)/(int_(0)^(x^(2))sin sqrt(t)dt) is equal to :

lim_(x to oo)(int_0^(2x) te^(t^(2))dt)/(e^(4x^(2))) equals

Evaluate : Lim_(x to 0)int_(0)^(x^(2)){(sinsqrt(t)) (tansqrt(t))dt}/(x^(4))

The value of int_(-pi//4)^(pi//4)(e^(x)sec^(2)x)/(e^(2x)-1)dx , is

lim_(x to pi/2) (tan2x)/(x-(pi)/(2))

VK JAISWAL ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. The value of lim ( x to (pi)/(4))(int(2 ) ^(cosec ^(2)x)tg (t )dt)/(x ...

    Text Solution

    |

  2. int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k (1)) ( sqrt(1...

    Text Solution

    |

  3. If int (0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then fi...

    Text Solution

    |

  4. int( (x^2+1)dx)/x

    Text Solution

    |

  5. If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) ...

    Text Solution

    |

  6. int( x^2+3)/(x^2+2)dx

    Text Solution

    |

  7. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  8. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  9. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2+1)))")")dx...

    Text Solution

    |

  10. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  11. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  12. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  13. int( x^3)/(x^2-3)dx

    Text Solution

    |

  14. If a continuous function f on [0,a] satisfies f(x)f(a-x)=1,agt0, then ...

    Text Solution

    |

  15. If {x} denotes the fractional part of x, then I = int (0) ^(100) (sqrt...

    Text Solution

    |

  16. int( x^3)/(x^2-2)dx

    Text Solution

    |

  17. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  18. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  19. Find the vlaur of lim (n to oo) (1)/(sqrtn)(1+ (1)/(sqrt2) +(1)/(sqrt3...

    Text Solution

    |

  20. The maximum value of int (-pi/2) ^((3pi)/2) sin x. f (x) dx, subject t...

    Text Solution

    |

  21. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |