Home
Class 12
MATHS
For each ositive integer n, define a fun...

For each ositive integer n, define a function `f _(n) on [0,1]` as follows:
`f _(n((x)={{:(0, if , x =0),(sin ""(pi)/(2n), if , 0 lt x le 1/n),( sin ""(2pi)/(2n) , if , 1/n lt x le 2/n), (sin ""(3pi)/(2pi), if, 2/n lt x le 3/n), (sin "'(npi)/(2pi) , if, (n-1)/(n) lt x le 1):}` Then the value of `lim _(x to oo)int _(0)^(1) f_(n) (x) dx ` is:

A

`pi`

B

`pi/2`

C

`1/pi`

D

`2/pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the limit of the integral of the function \( f_n(x) \) as \( n \) approaches infinity. The function \( f_n(x) \) is defined piecewise on the interval \([0, 1]\) as follows: \[ f_n(x) = \begin{cases} 0 & \text{if } x = 0 \\ \sin\left(\frac{\pi}{2n}\right) & \text{if } 0 < x \leq \frac{1}{n} \\ \sin\left(\frac{2\pi}{2n}\right) & \text{if } \frac{1}{n} < x \leq \frac{2}{n} \\ \sin\left(\frac{3\pi}{2n}\right) & \text{if } \frac{2}{n} < x \leq \frac{3}{n} \\ \vdots & \vdots \\ \sin\left(\frac{n\pi}{2n}\right) & \text{if } \frac{n-1}{n} < x \leq 1 \end{cases} \] ### Step 1: Set up the integral We need to evaluate the limit: \[ \lim_{n \to \infty} \int_0^1 f_n(x) \, dx \] We can break this integral into segments based on the definition of \( f_n(x) \): \[ \int_0^1 f_n(x) \, dx = \sum_{k=1}^{n} \int_{\frac{k-1}{n}}^{\frac{k}{n}} f_n(x) \, dx \] ### Step 2: Evaluate each segment For each segment \( \left[\frac{k-1}{n}, \frac{k}{n}\right] \), the function \( f_n(x) \) is constant and equals \( \sin\left(\frac{k\pi}{2n}\right) \): \[ \int_{\frac{k-1}{n}}^{\frac{k}{n}} f_n(x) \, dx = \sin\left(\frac{k\pi}{2n}\right) \cdot \left(\frac{k}{n} - \frac{k-1}{n}\right) = \sin\left(\frac{k\pi}{2n}\right) \cdot \frac{1}{n} \] ### Step 3: Combine the segments Thus, we can rewrite the integral as: \[ \int_0^1 f_n(x) \, dx = \sum_{k=1}^{n} \sin\left(\frac{k\pi}{2n}\right) \cdot \frac{1}{n} \] ### Step 4: Recognize the Riemann sum As \( n \to \infty \), this sum approaches the integral: \[ \lim_{n \to \infty} \sum_{k=1}^{n} \sin\left(\frac{k\pi}{2n}\right) \cdot \frac{1}{n} = \int_0^{\frac{\pi}{2}} \sin(x) \, dx \] ### Step 5: Evaluate the integral The integral \( \int_0^{\frac{\pi}{2}} \sin(x) \, dx \) can be computed as: \[ -\cos(x) \bigg|_0^{\frac{\pi}{2}} = -\cos\left(\frac{\pi}{2}\right) + \cos(0) = 0 + 1 = 1 \] ### Step 6: Final limit Thus, we have: \[ \lim_{n \to \infty} \int_0^1 f_n(x) \, dx = 1 \] ### Conclusion The final value of the limit is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|15 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|16 Videos
  • HYPERBOLA

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|6 Videos

Similar Questions

Explore conceptually related problems

If I _(n)=int _(0)^(pi) (sin (2nx))/(sin 2x)dx, then the value of I _( n +(1)/(2)) is equal to (n in I) :

If x in[(4n+1)(pi)/(2),(4n+3)(pi)/(2)] and n in N , then the value of int_(0)^(x) [cos t] dt , is

Prove that the value of : int_0^pi(sin(n+1/2)x)/sin(x/2)dx=pi

If f(x)=[{:(mx+1,if x le (pi)/(2)),(sinx+n,ifxgt(pi)/(2)):} is continuous at x = (pi)/(2) , then

If 0 lt x lt pi/2 and sin^(n) x + cos^(n) x ge 1 , then

Let f(x) = {{:(-2 sin x,"for",-pi le x le - (pi)/(2)),(a sin x + b,"for",-(pi)/(2) lt x lt (pi)/(2)),(cos x,"for",(pi)/(2) le x le pi):} . If f is continuous on [-pi, pi) , then find the values of a and b .

If |cos^-1(1)/(n)|lt (pi)/(2) , then lim_(n to oo) {(n+1)(2)/(pi)cos^-1.(1)/(n)-n}

The following functions are continuous on (0, pi) (a) tan x (b) underset(0)overset(x)int t "sin"(1)/(t)dt (c) {{:(,-1,0 lt xle (3pi)/(4)),(,2sin((2)/(9)x),(3pi)/(4)lt xlt pi):} (d) {{:(,x sin x,0 lt x le (pi)/(2)),(,(pi)/(2)sin(pi+x),(pi)/(2)lt x lt pi):}

If f (x) = tan ^(-1)sqrt((1 + sin x )/(1 - sin x)), 0 le x le (pi)/(2) then f' ((pi)/(6)) =?

Let I_(n)=int_(0)^(pi//2) sin^(n)x dx, nin N . Then

VK JAISWAL ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. For each ositive integer n, define a function f (n) on [0,1] as follow...

    Text Solution

    |

  2. int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k (1)) ( sqrt(1...

    Text Solution

    |

  3. If int (0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then fi...

    Text Solution

    |

  4. int( (x^2+1)dx)/x

    Text Solution

    |

  5. If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) ...

    Text Solution

    |

  6. int( x^2+3)/(x^2+2)dx

    Text Solution

    |

  7. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  8. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  9. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2+1)))")")dx...

    Text Solution

    |

  10. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  11. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  12. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  13. int( x^3)/(x^2-3)dx

    Text Solution

    |

  14. If a continuous function f on [0,a] satisfies f(x)f(a-x)=1,agt0, then ...

    Text Solution

    |

  15. If {x} denotes the fractional part of x, then I = int (0) ^(100) (sqrt...

    Text Solution

    |

  16. int( x^3)/(x^2-2)dx

    Text Solution

    |

  17. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  18. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  19. Find the vlaur of lim (n to oo) (1)/(sqrtn)(1+ (1)/(sqrt2) +(1)/(sqrt3...

    Text Solution

    |

  20. The maximum value of int (-pi/2) ^((3pi)/2) sin x. f (x) dx, subject t...

    Text Solution

    |

  21. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |