Home
Class 12
MATHS
Given a function 'g' continous everywher...

Given a function 'g' continous everywhere such that `int _(0) ^(1) g (t ) dt =2 and g (1)=5.` If `f (x ) =1/2 int _(0) ^(x) (x-t) ^(2)g (t)dt,` then the vlaue of `f'''(1)-f''(1)` is:

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( f'''(1) - f''(1) \) given the function \( f(x) \) defined as: \[ f(x) = \frac{1}{2} \int_0^x (x-t)^2 g(t) \, dt \] where \( g(t) \) is a continuous function satisfying \( \int_0^1 g(t) \, dt = 2 \) and \( g(1) = 5 \). ### Step 1: Determine the function \( g(t) \) We know that: \[ \int_0^1 g(t) \, dt = 2 \] and \( g(1) = 5 \). We can assume a form for \( g(t) \). Let's try \( g(t) = a t^b \). From \( g(1) = 5 \), we have: \[ a \cdot 1^b = 5 \implies a = 5 \] Now substituting into the integral: \[ \int_0^1 5 t^b \, dt = 2 \] Calculating the integral: \[ 5 \cdot \frac{t^{b+1}}{b+1} \bigg|_0^1 = 5 \cdot \frac{1}{b+1} = 2 \implies \frac{5}{b+1} = 2 \implies 5 = 2(b+1) \implies 5 = 2b + 2 \implies 2b = 3 \implies b = \frac{3}{2} \] Thus, we have: \[ g(t) = 5 t^{\frac{3}{2}} \] ### Step 2: Substitute \( g(t) \) into \( f(x) \) Now substituting \( g(t) \) back into \( f(x) \): \[ f(x) = \frac{1}{2} \int_0^x (x-t)^2 \cdot 5 t^{\frac{3}{2}} \, dt = \frac{5}{2} \int_0^x (x-t)^2 t^{\frac{3}{2}} \, dt \] ### Step 3: Expand \( (x-t)^2 \) Using the binomial expansion: \[ (x-t)^2 = x^2 - 2xt + t^2 \] Thus, we can write: \[ f(x) = \frac{5}{2} \int_0^x (x^2 - 2xt + t^2) t^{\frac{3}{2}} \, dt \] ### Step 4: Break down the integral Now we can separate the integral: \[ f(x) = \frac{5}{2} \left( x^2 \int_0^x t^{\frac{3}{2}} \, dt - 2x \int_0^x t^{\frac{5}{2}} \, dt + \int_0^x t^{\frac{7}{2}} \, dt \right) \] Calculating each integral: 1. \( \int_0^x t^{\frac{3}{2}} \, dt = \frac{2}{5} x^{\frac{5}{2}} \) 2. \( \int_0^x t^{\frac{5}{2}} \, dt = \frac{2}{7} x^{\frac{7}{2}} \) 3. \( \int_0^x t^{\frac{7}{2}} \, dt = \frac{2}{9} x^{\frac{9}{2}} \) Substituting back: \[ f(x) = \frac{5}{2} \left( x^2 \cdot \frac{2}{5} x^{\frac{5}{2}} - 2x \cdot \frac{2}{7} x^{\frac{7}{2}} + \frac{2}{9} x^{\frac{9}{2}} \right) \] This simplifies to: \[ f(x) = \frac{5}{2} \left( \frac{2}{5} x^{\frac{9}{2}} - \frac{4}{7} x^{\frac{9}{2}} + \frac{2}{9} x^{\frac{9}{2}} \right) \] ### Step 5: Combine the terms Combining the coefficients: \[ f(x) = \frac{5}{2} x^{\frac{9}{2}} \left( \frac{2}{5} - \frac{4}{7} + \frac{2}{9} \right) \] Calculating the common denominator (which is 315): \[ \frac{2}{5} = \frac{126}{315}, \quad \frac{4}{7} = \frac{180}{315}, \quad \frac{2}{9} = \frac{70}{315} \] So: \[ \frac{126 - 180 + 70}{315} = \frac{16}{315} \] Thus: \[ f(x) = \frac{5}{2} \cdot \frac{16}{315} x^{\frac{9}{2}} = \frac{40}{315} x^{\frac{9}{2}} = \frac{8}{63} x^{\frac{9}{2}} \] ### Step 6: Differentiate \( f(x) \) Now we differentiate \( f(x) \): 1. **First derivative**: \[ f'(x) = \frac{8}{63} \cdot \frac{9}{2} x^{\frac{7}{2}} = \frac{36}{63} x^{\frac{7}{2}} = \frac{4}{7} x^{\frac{7}{2}} \] 2. **Second derivative**: \[ f''(x) = \frac{4}{7} \cdot \frac{7}{2} x^{\frac{5}{2}} = 2 x^{\frac{5}{2}} \] 3. **Third derivative**: \[ f'''(x) = 2 \cdot \frac{5}{2} x^{\frac{3}{2}} = 5 x^{\frac{3}{2}} \] ### Step 7: Evaluate at \( x = 1 \) Now we evaluate \( f'''(1) \) and \( f''(1) \): \[ f'''(1) = 5 \cdot 1^{\frac{3}{2}} = 5 \] \[ f''(1) = 2 \cdot 1^{\frac{5}{2}} = 2 \] ### Step 8: Calculate \( f'''(1) - f''(1) \) Finally, we find: \[ f'''(1) - f''(1) = 5 - 2 = 3 \] ### Final Answer Thus, the value of \( f'''(1) - f''(1) \) is: \[ \boxed{3} \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|15 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|16 Videos
  • HYPERBOLA

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|6 Videos

Similar Questions

Explore conceptually related problems

Given a function g, continous everywhere such that g (1)=5 and int _(0)^(1) g (t) dt =2. If f (x) =1/2 int _(0) ^(x) (x -t)^(2) g (t) dt, then find the value of f '(1)+f''(1).

If int_(0)^(x^(2)(1+x))f(t)dt=x , then the value of f(2) is.

If int_0^xf(t) dt=x+int_x^1 tf(t)dt, then the value of f(1)

f(x)=int_0^x f(t) dt=x+int_x^1 tf(t)dt, then the value of f(1) is

If f(x)=1+1/x int_1^x f(t) dt, then the value of f(e^-1) is

If int_(0) ^(x) f (t) dt = x + int _(x ) ^(1) t f (t) dt, then the value of f (1) , is

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

If f (x) =int _(0)^(g(x))(dt)/(sqrt(1+t ^(3))),g (x) = int _(0)^(cos x ) (1+ sint ) ^(2) dt, then the value of f'((pi)/(2)) is equal to:

If f (x) =int _(0)^(g(x))(dt)/(sqrt(1+t ^(3))),g (x) = int _(0)^(cos x ) (1+ sint ) ^(2) dt, then the value of f'((pi)/(2)) is equal to:

Let f(x) = int_(0)^(x)(t-1)(t-2)^(2) dt , then find a point of minimum.

VK JAISWAL ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. Given a function 'g' continous everywhere such that int (0) ^(1) g (t ...

    Text Solution

    |

  2. int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k (1)) ( sqrt(1...

    Text Solution

    |

  3. If int (0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then fi...

    Text Solution

    |

  4. int( (x^2+1)dx)/x

    Text Solution

    |

  5. If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) ...

    Text Solution

    |

  6. int( x^2+3)/(x^2+2)dx

    Text Solution

    |

  7. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  8. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  9. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2+1)))")")dx...

    Text Solution

    |

  10. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  11. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  12. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  13. int( x^3)/(x^2-3)dx

    Text Solution

    |

  14. If a continuous function f on [0,a] satisfies f(x)f(a-x)=1,agt0, then ...

    Text Solution

    |

  15. If {x} denotes the fractional part of x, then I = int (0) ^(100) (sqrt...

    Text Solution

    |

  16. int( x^3)/(x^2-2)dx

    Text Solution

    |

  17. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  18. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  19. Find the vlaur of lim (n to oo) (1)/(sqrtn)(1+ (1)/(sqrt2) +(1)/(sqrt3...

    Text Solution

    |

  20. The maximum value of int (-pi/2) ^((3pi)/2) sin x. f (x) dx, subject t...

    Text Solution

    |

  21. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |