Home
Class 12
MATHS
If int (0) ^(x) (x ^(3) cos ^(4) x sin ^...

If `int _(0) ^(x) (x ^(3) cos ^(4) x sin ^(2)x)/(pi^(2) -3pix + 3x ^(2))dx = lamda int _( 0)^(pi//2)sin ^(2) x dx, ` then the value of `lamda` is:

A

`(pi)/(12)`

B

`(pi)/((8)`

C

`(pi)/(4)`

D

`(pi)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given integral equation \[ \int_{0}^{x} \frac{x^3 \cos^4 x \sin^2 x}{\pi^2 - 3\pi x + 3x^2} \, dx = \lambda \int_{0}^{\frac{\pi}{2}} \sin^2 x \, dx, \] we will follow these steps: ### Step 1: Substitute \( x \) with \( \pi - x \) We start by substituting \( x \) with \( \pi - x \) in the integral on the left-hand side: \[ \int_{0}^{\pi - x} \frac{(\pi - x)^3 \cos^4(\pi - x) \sin^2(\pi - x)}{\pi^2 - 3\pi(\pi - x) + 3(\pi - x)^2} \, dx. \] Using the properties of sine and cosine, we have: \[ \cos(\pi - x) = -\cos x \quad \text{and} \quad \sin(\pi - x) = \sin x. \] Thus, \[ \cos^4(\pi - x) = \cos^4 x \quad \text{and} \quad \sin^2(\pi - x) = \sin^2 x. \] ### Step 2: Simplify the denominator Now, we simplify the denominator: \[ \pi^2 - 3\pi(\pi - x) + 3(\pi - x)^2 = \pi^2 - 3\pi^2 + 3\pi x + 3(\pi^2 - 2\pi x + x^2) = -2\pi^2 + 6\pi x - 3x^2. \] ### Step 3: Combine the integrals Now we can add the original integral and the transformed integral: \[ 2I = \int_{0}^{x} \left[ \frac{x^3 \cos^4 x \sin^2 x + (\pi - x)^3 \cos^4 x \sin^2 x}{\pi^2 - 3\pi x + 3x^2 + (-2\pi^2 + 6\pi x - 3x^2)} \right] dx. \] ### Step 4: Factor and simplify This simplifies to: \[ 2I = \int_{0}^{x} \frac{(x^3 + (\pi - x)^3) \cos^4 x \sin^2 x}{\text{denominator}} \, dx. \] ### Step 5: Evaluate the integral The integral can be evaluated using the properties of definite integrals and symmetry. After simplification, we find: \[ I = \frac{\pi}{8} \int_{0}^{\frac{\pi}{2}} \sin^2 x \, dx. \] ### Step 6: Solve for \( \lambda \) From the equation we have: \[ I = \lambda \int_{0}^{\frac{\pi}{2}} \sin^2 x \, dx. \] Since we know that \[ \int_{0}^{\frac{\pi}{2}} \sin^2 x \, dx = \frac{\pi}{4}, \] we can substitute this back into our equation: \[ \frac{\pi}{8} \cdot \frac{\pi}{4} = \lambda \cdot \frac{\pi}{4}. \] ### Step 7: Solve for \( \lambda \) This gives us: \[ \lambda = \frac{\pi/8}{\pi/4} = \frac{1}{2}. \] Thus, the value of \( \lambda \) is: \[ \lambda = \frac{5}{8}. \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|15 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|16 Videos
  • HYPERBOLA

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|6 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi) x sin^(2) x dx

int_(0)^(pi//2) x sin x cos x dx

int_(0)^(pi) x sin x cos^(2)x\ dx

int_(0)^(pi/2) (cos^(2)x dx)/(cos^(2)x+4 sin^(2)x)

int_(0)^(pi) sin 3x dx

Evaluate : int_(0)^(pi//2) sin^(3) x cos x dx

int_(0)^(pi//2) (1)/(4+3 cos x)dx

(i) int(cos^(3) x+ sin^(3) x)/(sin^(2) x.cos ^(2) x)dx " "(ii) int(cos2x)/(cos^(2) x sin^(2)x) dx

Evaluate : int _(0)^(pi//4) sin 2x sin 3 x dx

Consider A =int_(0)^((pi)/(4))(sin(2x))/(x)dx, then

VK JAISWAL ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. If int (0) ^(x) (x ^(3) cos ^(4) x sin ^(2)x)/(pi^(2) -3pix + 3x ^(2))...

    Text Solution

    |

  2. int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k (1)) ( sqrt(1...

    Text Solution

    |

  3. If int (0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then fi...

    Text Solution

    |

  4. int( (x^2+1)dx)/x

    Text Solution

    |

  5. If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) ...

    Text Solution

    |

  6. int( x^2+3)/(x^2+2)dx

    Text Solution

    |

  7. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  8. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  9. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2+1)))")")dx...

    Text Solution

    |

  10. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  11. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  12. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  13. int( x^3)/(x^2-3)dx

    Text Solution

    |

  14. If a continuous function f on [0,a] satisfies f(x)f(a-x)=1,agt0, then ...

    Text Solution

    |

  15. If {x} denotes the fractional part of x, then I = int (0) ^(100) (sqrt...

    Text Solution

    |

  16. int( x^3)/(x^2-2)dx

    Text Solution

    |

  17. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  18. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  19. Find the vlaur of lim (n to oo) (1)/(sqrtn)(1+ (1)/(sqrt2) +(1)/(sqrt3...

    Text Solution

    |

  20. The maximum value of int (-pi/2) ^((3pi)/2) sin x. f (x) dx, subject t...

    Text Solution

    |

  21. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |