Home
Class 12
MATHS
Let y= {x}^([x]) then the value of int...

Let `y= {x}^([x])` then the value of `int_0^3 yd x` equals to (where {.} and [.] denote fractional part and integerpart function respectively)

A

1

B

`11/6`

C

3

D

`5/6`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_0^3 y \, dx \) where \( y = \{x\}^{[x]} \) (with \(\{x\}\) denoting the fractional part of \(x\) and \([x]\) denoting the greatest integer function), we will break down the integral into parts based on the intervals defined by the integer values of \(x\). ### Step 1: Understand the functions involved The fractional part function \(\{x\}\) is defined as: \[ \{x\} = x - [x] \] where \([x]\) is the greatest integer less than or equal to \(x\). ### Step 2: Identify the intervals We will evaluate the integral from \(0\) to \(3\), which can be broken down into three intervals: 1. \(0 \leq x < 1\) 2. \(1 \leq x < 2\) 3. \(2 \leq x < 3\) ### Step 3: Evaluate \(y\) in each interval 1. **For \(0 \leq x < 1\)**: - Here, \([x] = 0\) and \(\{x\} = x\). - Thus, \(y = \{x\}^{[x]} = x^0 = 1\). 2. **For \(1 \leq x < 2\)**: - Here, \([x] = 1\) and \(\{x\} = x - 1\). - Thus, \(y = \{x\}^{[x]} = (x - 1)^1 = x - 1\). 3. **For \(2 \leq x < 3\)**: - Here, \([x] = 2\) and \(\{x\} = x - 2\). - Thus, \(y = \{x\}^{[x]} = (x - 2)^2\). ### Step 4: Set up the integral Now we can set up the integral as follows: \[ \int_0^3 y \, dx = \int_0^1 1 \, dx + \int_1^2 (x - 1) \, dx + \int_2^3 (x - 2)^2 \, dx \] ### Step 5: Calculate each integral 1. **Calculate \( \int_0^1 1 \, dx \)**: \[ \int_0^1 1 \, dx = [x]_0^1 = 1 - 0 = 1 \] 2. **Calculate \( \int_1^2 (x - 1) \, dx \)**: \[ \int_1^2 (x - 1) \, dx = \left[\frac{(x - 1)^2}{2}\right]_1^2 = \left[\frac{(2 - 1)^2}{2} - \frac{(1 - 1)^2}{2}\right] = \frac{1}{2} - 0 = \frac{1}{2} \] 3. **Calculate \( \int_2^3 (x - 2)^2 \, dx \)**: \[ \int_2^3 (x - 2)^2 \, dx = \left[\frac{(x - 2)^3}{3}\right]_2^3 = \left[\frac{(3 - 2)^3}{3} - \frac{(2 - 2)^3}{3}\right] = \frac{1}{3} - 0 = \frac{1}{3} \] ### Step 6: Combine the results Now, we combine all the results: \[ \int_0^3 y \, dx = 1 + \frac{1}{2} + \frac{1}{3} \] To combine these fractions, we find a common denominator (which is 6): \[ 1 = \frac{6}{6}, \quad \frac{1}{2} = \frac{3}{6}, \quad \frac{1}{3} = \frac{2}{6} \] Thus, \[ \int_0^3 y \, dx = \frac{6}{6} + \frac{3}{6} + \frac{2}{6} = \frac{11}{6} \] ### Final Answer The value of \( \int_0^3 y \, dx \) is \( \frac{11}{6} \). ---
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|15 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|16 Videos
  • HYPERBOLA

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|6 Videos

Similar Questions

Explore conceptually related problems

The value of int({[x]})dx where {.} and [.] denotes the fractional part of x and greatest integer function equals

The value of int_(0)^(|x|){x} dx (where [*] and {*} denotes greatest integer and fraction part function respectively) is

The value of int_(0)^(100)[ tan ^(-1)x] d x is equal to (where [.] denotes the greatest integer function)

The value of int_(0)^(4) {x} dx (where , {.} denotes fractional part of x) is equal to

Find the value of int_(0)^(x){t}dt,x inR^(+) , here {.} denotes fractional part of 'x'.

The value of int_(0)^(infty)[tan^(-1)x] dx is equal to (where ,[.] denotes the greatest integer function)

Solve {cos^(-1)x}+[tan^(-1)x]=0 for real values of x . Where {.} and [.] are fractional part and greatest integer functions respectively.

The value of int_0^([x]) 2^x/(2^([x])) dx is equal to (where, [.] denotes the greatest integer function)

Given f(x)={3-[cot^(-1)((2x^3-3)/(x^2))] for x >0 and {x^2}cos(e^(1/x)) for x<0 (where {} and [] denotes the fractional part and the integral part functions respectively). Then which of the following statements do/does not hold good?

The value of the integral int_(-4)^(4)e^(|x|){x}dx is equal to (where {.} denotes the fractional part function)

VK JAISWAL ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. Let y= {x}^([x]) then the value of int0^3 yd x equals to (where {.} ...

    Text Solution

    |

  2. int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k (1)) ( sqrt(1...

    Text Solution

    |

  3. If int (0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then fi...

    Text Solution

    |

  4. int( (x^2+1)dx)/x

    Text Solution

    |

  5. If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) ...

    Text Solution

    |

  6. int( x^2+3)/(x^2+2)dx

    Text Solution

    |

  7. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  8. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  9. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2+1)))")")dx...

    Text Solution

    |

  10. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  11. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  12. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  13. int( x^3)/(x^2-3)dx

    Text Solution

    |

  14. If a continuous function f on [0,a] satisfies f(x)f(a-x)=1,agt0, then ...

    Text Solution

    |

  15. If {x} denotes the fractional part of x, then I = int (0) ^(100) (sqrt...

    Text Solution

    |

  16. int( x^3)/(x^2-2)dx

    Text Solution

    |

  17. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  18. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  19. Find the vlaur of lim (n to oo) (1)/(sqrtn)(1+ (1)/(sqrt2) +(1)/(sqrt3...

    Text Solution

    |

  20. The maximum value of int (-pi/2) ^((3pi)/2) sin x. f (x) dx, subject t...

    Text Solution

    |

  21. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |