Home
Class 12
MATHS
The minimum value of f(x)=int0^4e^(|x-t|...

The minimum value of `f(x)=int_0^4e^(|x-t|)dt` where `x in [0,3]` is : (A) `2e^2-1` (B) `e^4-1` (C) `2(e^2-1)` (D) `e^2-1`

A

`2e ^(2) -1`

B

` e ^(4) -1`

C

` 2 (e ^(2) -1)`

D

`e ^(2) -1`

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the function \( f(x) = \int_0^4 e^{|x-t|} dt \) where \( x \in [0, 3] \), we can break down the solution into several steps. ### Step 1: Break the Integral into Two Parts The absolute value function \( |x - t| \) can be split into two cases based on the value of \( t \) relative to \( x \): - For \( t \leq x \), \( |x - t| = x - t \) - For \( t > x \), \( |x - t| = t - x \) Thus, we can express the integral as: \[ f(x) = \int_0^x e^{x-t} dt + \int_x^4 e^{t-x} dt \] ### Step 2: Evaluate Each Integral Now we evaluate each part separately. 1. **First Integral**: \[ \int_0^x e^{x-t} dt = e^x \int_0^x e^{-t} dt = e^x \left[-e^{-t}\right]_0^x = e^x \left[-e^{-x} + 1\right] = e^x(1 - e^{-x}) = e^x - 1 \] 2. **Second Integral**: \[ \int_x^4 e^{t-x} dt = e^{-x} \int_x^4 e^t dt = e^{-x} \left[e^t\right]_x^4 = e^{-x} (e^4 - e^x) = e^{4-x} - 1 \] ### Step 3: Combine the Results Now we combine the results of both integrals: \[ f(x) = (e^x - 1) + (e^{4-x} - 1) = e^x + e^{4-x} - 2 \] ### Step 4: Find the Derivative To find the minimum value, we differentiate \( f(x) \): \[ f'(x) = e^x - e^{4-x} \cdot (-1) = e^x + e^{4-x} \] ### Step 5: Set the Derivative to Zero Setting the derivative to zero to find critical points: \[ e^x = e^{4-x} \] Taking the natural logarithm of both sides: \[ x = 4 - x \implies 2x = 4 \implies x = 2 \] ### Step 6: Evaluate \( f(x) \) at the Critical Point Now we evaluate \( f(2) \): \[ f(2) = e^2 + e^{4-2} - 2 = e^2 + e^2 - 2 = 2e^2 - 2 \] ### Step 7: Check the Endpoints We also need to check the endpoints \( x = 0 \) and \( x = 3 \): 1. For \( x = 0 \): \[ f(0) = e^0 + e^{4-0} - 2 = 1 + e^4 - 2 = e^4 - 1 \] 2. For \( x = 3 \): \[ f(3) = e^3 + e^{4-3} - 2 = e^3 + e - 2 \] ### Step 8: Compare Values Now we compare the values: - \( f(2) = 2e^2 - 2 \) - \( f(0) = e^4 - 1 \) - \( f(3) = e^3 + e - 2 \) ### Conclusion The minimum value occurs at \( x = 2 \): \[ \text{Minimum value of } f(x) = 2e^2 - 2 \] Thus, the answer is \( \boxed{2(e^2 - 1)} \).
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|15 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|16 Videos
  • HYPERBOLA

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|6 Videos

Similar Questions

Explore conceptually related problems

The minimum value of e^((2x^2-2x+1)sin^(2)x) is a. e (b) 1/e (c) 1 (d) 0

int_(0)^(1)e^(2x)e^(e^(x) dx =)

f(x) = int_(x)^(x^(2))(e^(t))/(t)dt , then f'(t) is equal to : (a) 0 (b) 2e (c) 2e^2 -2 (d) e^2-e

The value of int_0^(pi/4) (e^(1/(cos^2x)).sinx)/(cos^3 x)dx equals (A) (e^2-e)/2 (B) (e^4-1)/4 (C) (e^2+e)/4 (D) (e^4-1)/2

The value of int_0^1e^(x^2-x) dx is (a) 1 (c) > e^(-1/4) (d) < e^(-1/4)

The value of int_0^1e^(x^2-x)dx is (a) 1 (c) > e^(-1/4) (d)

The minimum value of x\ (log)_e x is equal to e (b) 1//e (c) -1//e (d) 2e (e) e

The maximum value of x^4e^ (-x^2) is (A) e^2 (B) e^(-2) (C) 12 e^(-2) (D) 4e^(-2)

If f(x)=int_(x^2)^(x^2+1)e^(-t^2)dt , then f(x) increases in

If int_1^2e^(x^2)dx=a ,t h e nint_e^(e^4)sqrt(1n x)dx is equal to (a) 2e^4-2e-a (b) 2e^4-e-a (c) 2e^4-e-2a (d) e^4-e-a

VK JAISWAL ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. The minimum value of f(x)=int0^4e^(|x-t|)dt where x in [0,3] is : ...

    Text Solution

    |

  2. int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k (1)) ( sqrt(1...

    Text Solution

    |

  3. If int (0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then fi...

    Text Solution

    |

  4. int( (x^2+1)dx)/x

    Text Solution

    |

  5. If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) ...

    Text Solution

    |

  6. int( x^2+3)/(x^2+2)dx

    Text Solution

    |

  7. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  8. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  9. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2+1)))")")dx...

    Text Solution

    |

  10. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  11. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  12. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  13. int( x^3)/(x^2-3)dx

    Text Solution

    |

  14. If a continuous function f on [0,a] satisfies f(x)f(a-x)=1,agt0, then ...

    Text Solution

    |

  15. If {x} denotes the fractional part of x, then I = int (0) ^(100) (sqrt...

    Text Solution

    |

  16. int( x^3)/(x^2-2)dx

    Text Solution

    |

  17. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  18. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  19. Find the vlaur of lim (n to oo) (1)/(sqrtn)(1+ (1)/(sqrt2) +(1)/(sqrt3...

    Text Solution

    |

  20. The maximum value of int (-pi/2) ^((3pi)/2) sin x. f (x) dx, subject t...

    Text Solution

    |

  21. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |