Home
Class 12
MATHS
If int (dx)/(x ^(4) (1+x^(3))^2)=a ln |(...

If `int (dx)/(x ^(4) (1+x^(3))^2)=a ln |(1+x ^(3))/(x ^(3))| +(b)/(x ^(3)) +(c)/(1+ x^(2)) +d.` then (where d is arbitrary constant)

A

`a =1/3 , b =1/3 , c =1/3`

B

`a= 2/3, b=-1/3, c =1/3`

C

`a =2/3, b =-1/3 , c=-1/3`

D

`a = 2/3b =1/3, c=-1/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{dx}{x^4 (1+x^3)^2} \] we will use substitution and partial fractions. ### Step 1: Rewrite the Integral We can rewrite the integral as follows: \[ \int \frac{dx}{x^4 (1+x^3)^2} = \int \frac{1}{x^4} \cdot \frac{1}{(1+x^3)^2} \, dx \] ### Step 2: Use Substitution Let \( t = 1 + x^3 \). Then, we have: \[ dt = 3x^2 \, dx \quad \Rightarrow \quad dx = \frac{dt}{3x^2} \] Also, from our substitution, we can express \( x^3 \) in terms of \( t \): \[ x^3 = t - 1 \quad \Rightarrow \quad x = (t - 1)^{1/3} \] Now, we need to express \( x^4 \) in terms of \( t \): \[ x^4 = (x^3)^{4/3} = (t - 1)^{4/3} \] ### Step 3: Substitute in the Integral Now substituting these into the integral gives: \[ \int \frac{1}{(t - 1)^{4/3} t^2} \cdot \frac{dt}{3x^2} \] We also need to express \( x^2 \): \[ x^2 = (t - 1)^{2/3} \] Thus, the integral becomes: \[ \int \frac{1}{(t - 1)^{4/3} t^2} \cdot \frac{dt}{3(t - 1)^{2/3}} = \frac{1}{3} \int \frac{1}{(t - 1)^2 t^2} dt \] ### Step 4: Partial Fraction Decomposition Now we need to perform partial fraction decomposition on \[ \frac{1}{(t - 1)^2 t^2} \] Assuming: \[ \frac{1}{(t - 1)^2 t^2} = \frac{A}{t} + \frac{B}{t^2} + \frac{C}{t - 1} + \frac{D}{(t - 1)^2} \] Multiplying through by the denominator \((t - 1)^2 t^2\) gives: \[ 1 = A(t - 1)^2 + B(t - 1)^2 + Ct^2(t - 1) + Dt^2 \] ### Step 5: Solve for Coefficients To find the coefficients \(A\), \(B\), \(C\), and \(D\), we can substitute convenient values for \(t\): 1. Set \(t = 0\) to find \(B\). 2. Set \(t = 1\) to find \(D\). 3. Set other values to find \(A\) and \(C\). After solving these equations, we will find the values of \(A\), \(B\), \(C\), and \(D\). ### Step 6: Integrate Each Term Once we have the partial fractions, we can integrate each term separately: \[ \int \left( \frac{A}{t} + \frac{B}{t^2} + \frac{C}{t - 1} + \frac{D}{(t - 1)^2} \right) dt \] ### Step 7: Substitute Back After integrating, we will substitute back \(t = 1 + x^3\) to express the integral in terms of \(x\). ### Final Expression The final result will be of the form: \[ a \ln \left| \frac{1 + x^3}{x^3} \right| + \frac{b}{x^3} + \frac{c}{1 + x^2} + d \] ### Step 8: Determine Constants By matching coefficients from the integrated expression with the given form, we can determine the values of \(a\), \(b\), and \(c\).
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|15 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|16 Videos
  • HYPERBOLA

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|6 Videos

Similar Questions

Explore conceptually related problems

If int (dx)/(x ^(4) (1+x^(3))^2)=a ln |(1+x ^(3))/(x ^(3))| +(b)/(x ^(3)) +(c)/(1+ x^(3)) +d. then (where d is arbitrary constant)

If int dx/(x^4+x^3)=A/x^2+b/x+ln|x/(x+1)|+C , then

int_(1)^(3) (dx)/(x^(2)(x+1))=(2)/(3)+log .(2)/(3)

int(1)/(x(3+log x))dx

The value of the integral inte^(3sin^(-1)x)((1)/(sqrt(1-x^(2)))+e^(3cos^(-1)x))dx is equal to (where, c is an arbitrary constant)

If x^3-1/(x^3)=14 , then x-1/x=? (a)5 (b) 4 (d) 3 (d) 2

Statement -1 : If I_(1)=int(e^(x))/(e^(4x)+e^(2x)+1)dx and I_(2)=int(e^(-x))/(e^(-4x)+e^(-2x)+1)dx , then I_(2)-I_(1)=(1)/(2)log((e^(2x)-e^(x)+1)/(e^(2x)+e^(x)+1))+C where C is an arbitrary constant. Statement -2 : A primitive of f(x) =(x^(2)-1)/(x^(4)+x^(2)+1) is (1)/(2)log((x^(2)-x+1)/(x^(2)+x+1)) .

(3x^(2)+x+1)/((x-1)^(4))=(A)/(x-1)+(B)/((x-1)^(2))+(C)/((x-1)^(3))+(D)/((x-1)^(4)) then A+B-C+D=

If range of f (x)= ((ln x) (ln x ^(2))+ln x ^(3)+3)/(ln ^(2) x+ln x ^(2)+2) can be expressed as [ (a)/(b),(c )/(d)] where a,b,c and d are prime numbers (not nacessarily distinct) then find the value of ((a+b+c+d))/(2).

int (dx)/((x+1)(x-2))=A log (x+1)+B log (x-2)+C , where

VK JAISWAL ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. If int (dx)/(x ^(4) (1+x^(3))^2)=a ln |(1+x ^(3))/(x ^(3))| +(b)/(x ^(...

    Text Solution

    |

  2. int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k (1)) ( sqrt(1...

    Text Solution

    |

  3. If int (0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then fi...

    Text Solution

    |

  4. int( (x^2+1)dx)/x

    Text Solution

    |

  5. If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) ...

    Text Solution

    |

  6. int( x^2+3)/(x^2+2)dx

    Text Solution

    |

  7. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  8. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  9. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2+1)))")")dx...

    Text Solution

    |

  10. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  11. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  12. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  13. int( x^3)/(x^2-3)dx

    Text Solution

    |

  14. If a continuous function f on [0,a] satisfies f(x)f(a-x)=1,agt0, then ...

    Text Solution

    |

  15. If {x} denotes the fractional part of x, then I = int (0) ^(100) (sqrt...

    Text Solution

    |

  16. int( x^3)/(x^2-2)dx

    Text Solution

    |

  17. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  18. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  19. Find the vlaur of lim (n to oo) (1)/(sqrtn)(1+ (1)/(sqrt2) +(1)/(sqrt3...

    Text Solution

    |

  20. The maximum value of int (-pi/2) ^((3pi)/2) sin x. f (x) dx, subject t...

    Text Solution

    |

  21. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |