Home
Class 12
MATHS
Let f(x)=int ( x )^(2) (dy)/(sqrt(1+ y ^...

Let `f(x)=int _( x )^(2) (dy)/(sqrt(1+ y ^(3))).` The value of the integral `int _(0)^(2) xf (x ) dx` is equal to:

A

1

B

`1/3`

C

`4/3`

D

`2/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \[ I = \int_0^2 x f(x) \, dx \] where \[ f(x) = \int_x^2 \frac{dy}{\sqrt{1 + y^3}}. \] ### Step 1: Use Integration by Parts We can use integration by parts, where we let: - \( u = f(x) \) - \( dv = x \, dx \) Then, we have: - \( du = f'(x) \, dx \) - \( v = \frac{x^2}{2} \) Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \), we get: \[ I = \left[ f(x) \cdot \frac{x^2}{2} \right]_0^2 - \int_0^2 \frac{x^2}{2} f'(x) \, dx. \] ### Step 2: Evaluate the Boundary Terms Now, we evaluate the boundary terms: \[ \left[ f(x) \cdot \frac{x^2}{2} \right]_0^2 = f(2) \cdot \frac{2^2}{2} - f(0) \cdot \frac{0^2}{2}. \] Calculating \( f(2) \): \[ f(2) = \int_2^2 \frac{dy}{\sqrt{1 + y^3}} = 0, \] and \( f(0) \) is not needed since it is multiplied by zero. Thus, the boundary term evaluates to: \[ 0 - 0 = 0. \] ### Step 3: Find \( f'(x) \) Next, we need to find \( f'(x) \). By the Fundamental Theorem of Calculus, we have: \[ f'(x) = -\frac{1}{\sqrt{1 + x^3}}. \] ### Step 4: Substitute \( f'(x) \) into the Integral Now, substituting \( f'(x) \) into the integral, we have: \[ I = 0 - \int_0^2 \frac{x^2}{2} \left(-\frac{1}{\sqrt{1 + x^3}}\right) \, dx = \frac{1}{2} \int_0^2 \frac{x^2}{\sqrt{1 + x^3}} \, dx. \] ### Step 5: Evaluate the Integral Now we need to evaluate \[ \int_0^2 \frac{x^2}{\sqrt{1 + x^3}} \, dx. \] Using a substitution \( u = 1 + x^3 \), we have \( du = 3x^2 \, dx \) or \( dx = \frac{du}{3x^2} \). When \( x = 0 \), \( u = 1 \), and when \( x = 2 \), \( u = 9 \). Thus, the integral becomes: \[ \int_1^9 \frac{x^2}{\sqrt{u}} \cdot \frac{du}{3x^2} = \frac{1}{3} \int_1^9 u^{-1/2} \, du. \] Evaluating this integral gives: \[ \frac{1}{3} \cdot \left[ 2u^{1/2} \right]_1^9 = \frac{2}{3} \left( 3 - 1 \right) = \frac{2}{3} \cdot 2 = \frac{4}{3}. \] ### Step 6: Final Calculation of \( I \) Now substituting back into the expression for \( I \): \[ I = \frac{1}{2} \cdot \frac{4}{3} = \frac{2}{3}. \] Thus, the value of the integral \( \int_0^2 x f(x) \, dx \) is \[ \boxed{\frac{2}{3}}. \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|15 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|16 Videos
  • HYPERBOLA

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|6 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(2a) (f(x))/(f(x)+f(2a-x))dx is equal to

The value of the integral int_(0)^(8)(x^(2))/(x^(2)+8x+32) dx is equal to

The value of the integral int_(0)^(4)(x^(2))/(x^(2)-4x+8)dx is equal to

The integral int_(-1)^(1) (|x+2|)/(x+2)dx is equal to

The value of definite integral int _(0)^(oo) (dx )/((1+ x^(9)) (1+ x^(2))) equal to:

The value of the integral int_(0)^(pi//2)(f(x))/(f(x)+f(pi/(2)-x))dx is

The value of the definite integral int_0^(pi/2) ((1+sin3x)/(1+2sinx)) dx equals to

The value of the integral int_(0)^(a) (1)/(x+sqrt(a^(2)-x^(2)))dx , is

If f(x)=cos(tan^(-1)x) , then the value of the integral int_(0)^(1)xf''(x)dx is

The value of the definite integral int_(0)^(pi//3) ln (1+ sqrt3tan x )dx equals

VK JAISWAL ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. Let f(x)=int ( x )^(2) (dy)/(sqrt(1+ y ^(3))). The value of the integr...

    Text Solution

    |

  2. int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k (1)) ( sqrt(1...

    Text Solution

    |

  3. If int (0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then fi...

    Text Solution

    |

  4. int( (x^2+1)dx)/x

    Text Solution

    |

  5. If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) ...

    Text Solution

    |

  6. int( x^2+3)/(x^2+2)dx

    Text Solution

    |

  7. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  8. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  9. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2+1)))")")dx...

    Text Solution

    |

  10. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  11. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  12. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  13. int( x^3)/(x^2-3)dx

    Text Solution

    |

  14. If a continuous function f on [0,a] satisfies f(x)f(a-x)=1,agt0, then ...

    Text Solution

    |

  15. If {x} denotes the fractional part of x, then I = int (0) ^(100) (sqrt...

    Text Solution

    |

  16. int( x^3)/(x^2-2)dx

    Text Solution

    |

  17. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  18. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  19. Find the vlaur of lim (n to oo) (1)/(sqrtn)(1+ (1)/(sqrt2) +(1)/(sqrt3...

    Text Solution

    |

  20. The maximum value of int (-pi/2) ^((3pi)/2) sin x. f (x) dx, subject t...

    Text Solution

    |

  21. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |