Home
Class 12
MATHS
For a gt 0, if I = int sqrt((x)/(a ^(3) ...

For `a gt 0, if I = int sqrt((x)/(a ^(3) -x ^(3)))dx = A sin ^(-1) ((x ^(3//2))/(B))+ C,` where C is any arbitary constant, then:

A

`A=2/3`

B

`B=a ^(3//2)`

C

`A=1/3`

D

`B =a ^(1//2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \sqrt{\frac{x}{a^3 - x^3}} \, dx \) and express it in the form \( A \sin^{-1}\left(\frac{x^{3/2}}{B}\right) + C \), where \( C \) is an arbitrary constant, we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{\sqrt{x}}{\sqrt{a^3 - x^3}} \, dx \] ### Step 2: Substitution Let \( t = x^{3/2} \). Then, we differentiate \( t \) with respect to \( x \): \[ \frac{dt}{dx} = \frac{3}{2} x^{1/2} \quad \Rightarrow \quad dx = \frac{2}{3} x^{-1/2} dt \] Since \( x = t^{2/3} \), we have: \[ dx = \frac{2}{3} t^{-1/3} dt \] ### Step 3: Substitute in the Integral Substituting \( x \) and \( dx \) into the integral, we get: \[ I = \int \frac{\sqrt{t^{2/3}}}{\sqrt{a^3 - (t^{2/3})^3}} \cdot \frac{2}{3} t^{-1/3} dt \] This simplifies to: \[ I = \int \frac{t^{1/3}}{\sqrt{a^3 - t^2}} \cdot \frac{2}{3} t^{-1/3} dt = \frac{2}{3} \int \frac{1}{\sqrt{a^3 - t^2}} dt \] ### Step 4: Recognize the Standard Integral The integral \( \int \frac{1}{\sqrt{a^2 - t^2}} dt \) is a standard integral that evaluates to \( \sin^{-1}\left(\frac{t}{a}\right) + C \). Here, we have: \[ I = \frac{2}{3} \sin^{-1}\left(\frac{t}{\sqrt{a^3}}\right) + C \] ### Step 5: Substitute Back for \( t \) Recalling that \( t = x^{3/2} \), we substitute back: \[ I = \frac{2}{3} \sin^{-1}\left(\frac{x^{3/2}}{\sqrt{a^3}}\right) + C \] ### Step 6: Identify Constants \( A \) and \( B \) Comparing this with the given form \( A \sin^{-1}\left(\frac{x^{3/2}}{B}\right) + C \), we find: - \( A = \frac{2}{3} \) - \( B = \sqrt{a^3} \) ### Conclusion Thus, the values of \( A \) and \( B \) are: \[ A = \frac{2}{3}, \quad B = a^{3/2} \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|16 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|2 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|29 Videos
  • HYPERBOLA

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|6 Videos

Similar Questions

Explore conceptually related problems

If the solution of the differential equation y^(3)x^(2)cos(x^(3))dx+sin(x^(3))y^(2)dy=(x)/(3)dx is 2sin(x^(3))y^(k)=x^(2)+C (where C is an arbitrary constant), then the value of k is equal to

If int (2x + 5 )/(sqrt(7 - 6 x - x ^ 2 )) dx = A sqrt (7 - 6x - x ^ 2 ) + B sin ^ ( -1) (( x + 3 )/( 4 ) ) + C (Where C is a constant of integration), then the ordered pair (A, B) is equal to :

If int (dx)/(x ^(4) (1+x^(3))^2)=a ln |(1+x ^(3))/(x ^(3))| +(b)/(x ^(3)) +(c)/(1+ x^(3)) +d. then (where d is arbitrary constant)

If int (dx)/(x ^(4) (1+x^(3))^2)=a ln |(1+x ^(3))/(x ^(3))| +(b)/(x ^(3)) +(c)/(1+ x^(2)) +d. then (where d is arbitrary constant)

"If" int(dx)/((x^(2)-2x+10)^(2))=A("tan"^(-1)((x-1)/(3))+(f(x))/(x^(2)-2x+10))+C ,where, C is a constant of integration, then

"If" int(dx)/((x^(2)-2x+10)^(2))=A("tan"^(-1)((x-1)/(3))+(f(x))/(x^(2)-2x+10))+C ,where, C is a constant of integration, then

If int ( dx )/(5 + 4 sin x) = A tan^(-1) ( B tan ((x)/(2)) + (4)/(3)) + C , then :

If the integral I=int(x^(5))/(sqrt(1+x^(3)))dx =Ksqrt(x^(3)+1)(x^(3)-2)+C , (where, C is the constant of integration), then the value of 9K is equal to

(i) int ((1+x)^(3))/(sqrt(x))dx " "(ii) int((1+x)^(3))/(x^(4)) dx

If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f (x))/(sqrt2-f (x))|+C where f (x) = sin x + cos x find the value of (12A+9sqrt2V)-3.