Home
Class 12
MATHS
Let int x sin x. sec ^(3) x dx =1/2 (x....

Let `int x sin x. sec ^(3) x dx =1/2 (x.f (f(x)-f(x)) +k,` then:

A

`f (x) cancel (in) (-1,1)`

B

`g (x) =sin x `has 6 solution for `x in [-pi, 2pi]`

C

`g'(x) =f(x),AA x in R`

D

`f (x) gg(x) ` has no solution

Text Solution

Verified by Experts

The correct Answer is:
A, C, D
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|16 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|2 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|29 Videos
  • HYPERBOLA

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|6 Videos

Similar Questions

Explore conceptually related problems

Let int x sinx sec^3x dx = 1/2(x.f(x) - g(x)) + k , then

If int e^(sec x)(sec x tan x f(x)+(sec x tan x + sec^(2) x))dx = e^(sec x)f(x) + C , then a possible choice of f(x) is

Let f(x)=x^(2)-2xandg(x)=f(f(x)-1)+f(5-f(x)), then

Let d/(dx) (F(x))= e^(sinx)/x, x>0 . If int_1^4 2e^sin(x^2)/x dx = F(k)-F(1) , then possible value of k is:

If int (2^(x))/(sqrt(1-4^(x))) dx = k sin ^(-1) (f(x)) + C then :

Let f(x) and g(x) be differentiable functions such that f(x)+ int_(0)^(x) g(t)dt= sin x(cos x- sin x) and (f'(x))^(2)+(g(x))^(2) = 1,"then" f(x) and g (x) respectively , can be

int(x+1)/(x(1+x e^x)^2)dx=log|1-f(x)|+f(x)+c , then f(x)=

Let (d)/(dx) F(x)=(e^(sin x))/(x), x gt 0 , If int_(1)^(4) (3)/(x) e^(sin x^(3))dx=F(k)-F(1) , then one of the possible value of k is -

Let int(dx)/((x^(2)+1)(x^(2)+9))=f(x)+C, (where C is constant of integration) such that f(0)= 0.If f(sqrt(3))=(5)/(36)k, then k is

Let int(dx)/((x^(2)+1)(x^(2)+9))=f(x)+C, (where C is constant of integration) such that f(0)= 0.If f(sqrt(3))=(5)/(36)k, then k is