Home
Class 12
MATHS
If int(sin3theta+sintheta)costhetae^sint...

If `int(sin3theta+sintheta)costhetae^sinthetadtheta=``(Asin^3theta+Bcos^2theta+Csintheta+Dcostheta+E)e^sintheta+F`, then

A

`A=-4`

B

`B=-12`

C

`C=-20`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int (\sin 3\theta + \sin \theta) \cos \theta e^{\sin \theta} d\theta, \] we will follow these steps: ### Step 1: Rewrite \(\sin 3\theta\) We can use the identity for \(\sin 3\theta\): \[ \sin 3\theta = 3\sin\theta - 4\sin^3\theta. \] Thus, we can rewrite the integral as: \[ \int (3\sin\theta - 4\sin^3\theta + \sin\theta) \cos \theta e^{\sin \theta} d\theta = \int (4\sin\theta - 4\sin^3\theta) \cos \theta e^{\sin \theta} d\theta. \] ### Step 2: Factor out constants We can factor out the constant \(4\): \[ = 4 \int (\sin\theta - \sin^3\theta) \cos \theta e^{\sin \theta} d\theta. \] ### Step 3: Substitute \(u = \sin \theta\) Let \(u = \sin \theta\). Then, \(du = \cos \theta d\theta\). The integral becomes: \[ = 4 \int (u - u^3) e^u du. \] ### Step 4: Split the integral We can split the integral: \[ = 4 \left( \int u e^u du - \int u^3 e^u du \right). \] ### Step 5: Use integration by parts For the first integral \(\int u e^u du\), we use integration by parts: Let \(v = e^u\) and \(dw = u du\). Then, \(dv = e^u du\) and \(w = u\): \[ \int u e^u du = u e^u - \int e^u du = u e^u - e^u + C. \] For the second integral \(\int u^3 e^u du\), we will also use integration by parts multiple times: 1. Let \(v = e^u\) and \(dw = u^3 du\). 2. This will require three applications of integration by parts. After applying integration by parts three times, we will find: \[ \int u^3 e^u du = u^3 e^u - 3\int u^2 e^u du. \] Continuing this process, we will eventually express \(\int u^3 e^u du\) in terms of simpler integrals. ### Step 6: Combine results After calculating both integrals, we will combine them: \[ = 4 \left( (u e^u - e^u) - \text{result from } \int u^3 e^u du \right). \] ### Step 7: Substitute back to \(\theta\) Finally, we substitute back \(u = \sin \theta\): \[ = 4 \left( (\sin \theta e^{\sin \theta} - e^{\sin \theta}) - \text{result from } \int u^3 e^u du \right) + C. \] ### Step 8: Write in the required form We can express the result in the form given in the question: \[ = (A \sin^3 \theta + B \cos^2 \theta + C \sin \theta + D \cos \theta + E)e^{\sin \theta} + F. \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|16 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|2 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|29 Videos
  • HYPERBOLA

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|6 Videos

Similar Questions

Explore conceptually related problems

Find : int((3sintheta-2)costheta)/(5-cos^2theta-4sintheta)dthetathetadot

Prove that : (sintheta-costheta)/(sintheta+costheta)+(sintheta+costheta)/(sintheta-costheta)=(2)/(2sin^(2)theta-1)

If y=(sin 3theta)/(sintheta), theta nen pi, then

The value of (2(sin2theta+2cos^2theta-1))/(costheta-sintheta-cos3theta+sin3theta) is a.\ costheta b. sectheta c. cosectheta d. sintheta

Prove that sin^(3)theta+cos^(3)theta=(sintheta+costheta)(1-sin thetacostheta) .

if sintheta-costheta=0, then the value of (sin^4theta+cos^4theta)

If int(sintheta-costheta)/((sintheta+costheta)sqrt(sinthetacostheta+sin^(2)thetacos^(2)theta))d theta = "cosec"^(_1)(f(theta))+C , then

Prove that tantheta=(sintheta-2sin^3theta)/(2cos^3theta-costheta)

(A_n)/(B_n) is equal to (theta=pi/n) (2theta-sin2theta)/(sin2theta-thetacos^2theta) (b) (2theta-sintheta)/(sin2theta-thetacos^2theta) (theta-costhetasintheta)/(costheta(sintheta-thetacostheta) (d) none of these

Prove: (cos^2theta)/(sintheta)-cos e c\ theta+sintheta=0