Home
Class 12
MATHS
Let J=int (-1) ^(2) (cot ^(-1) ""(1)/(x ...

Let `J=int _(-1) ^(2) (cot ^(-1) ""(1)/(x )+ cot ^(-1) x ) dx, K =int _(-2pi) ^(7pi) (sin x)/(|sin x|)dx.` Then which of the following alternative (s) is/are correct ?

A

`2J+3K=8pi`

B

`4J ^(2) +K ^(2) =26pi^(2)`

C

`2J =K=3pi`

D

`(J)/(K) =2/5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integrals \( J \) and \( K \) separately. ### Step 1: Evaluate \( J \) We have: \[ J = \int_{-1}^{2} \left( \cot^{-1}\left(\frac{1}{x}\right) + \cot^{-1}(x) \right) dx \] Using the identity: \[ \cot^{-1}\left(\frac{1}{x}\right) = \tan^{-1}(x) \] and the property: \[ \tan^{-1}(x) + \cot^{-1}(x) = \frac{\pi}{2} \] We can rewrite \( J \) as: \[ J = \int_{-1}^{2} \left( \tan^{-1}(x) + \cot^{-1}(x) \right) dx = \int_{-1}^{2} \frac{\pi}{2} dx \] Now, we can calculate the integral: \[ J = \frac{\pi}{2} \int_{-1}^{2} dx = \frac{\pi}{2} [x]_{-1}^{2} = \frac{\pi}{2} (2 - (-1)) = \frac{\pi}{2} \cdot 3 = \frac{3\pi}{2} \] ### Step 2: Evaluate \( K \) Next, we evaluate: \[ K = \int_{-2\pi}^{7\pi} \frac{\sin x}{|\sin x|} dx \] We need to analyze the function \( \frac{\sin x}{|\sin x|} \): - \( \frac{\sin x}{|\sin x|} = 1 \) when \( \sin x > 0 \) - \( \frac{\sin x}{|\sin x|} = -1 \) when \( \sin x < 0 \) Now, we can break the integral into intervals where \( \sin x \) is positive and negative. The periodicity of \( \sin x \) is \( 2\pi \). The intervals we need to consider from \( -2\pi \) to \( 7\pi \) are: 1. From \( -2\pi \) to \( -\pi \): \( \sin x < 0 \) (contributes \(-\pi\)) 2. From \( -\pi \) to \( 0 \): \( \sin x < 0 \) (contributes \(-\pi\)) 3. From \( 0 \) to \( \pi \): \( \sin x > 0 \) (contributes \( \pi \)) 4. From \( \pi \) to \( 2\pi \): \( \sin x < 0 \) (contributes \(-\pi\)) 5. From \( 2\pi \) to \( 3\pi \): \( \sin x > 0 \) (contributes \( \pi \)) 6. From \( 3\pi \) to \( 4\pi \): \( \sin x < 0 \) (contributes \(-\pi\)) 7. From \( 4\pi \) to \( 5\pi \): \( \sin x > 0 \) (contributes \( \pi \)) 8. From \( 5\pi \) to \( 6\pi \): \( \sin x < 0 \) (contributes \(-\pi\)) 9. From \( 6\pi \) to \( 7\pi \): \( \sin x > 0 \) (contributes \( \pi \)) Now, we can sum these contributions: - From \( -2\pi \) to \( -\pi \): \(-\pi\) - From \( -\pi \) to \( 0 \): \(-\pi\) - From \( 0 \) to \( \pi \): \(+\pi\) - From \( \pi \) to \( 2\pi \): \(-\pi\) - From \( 2\pi \) to \( 3\pi \): \(+\pi\) - From \( 3\pi \) to \( 4\pi \): \(-\pi\) - From \( 4\pi \) to \( 5\pi \): \(+\pi\) - From \( 5\pi \) to \( 6\pi \): \(-\pi\) - From \( 6\pi \) to \( 7\pi \): \(+\pi\) Calculating the total: \[ K = -\pi - \pi + \pi - \pi + \pi - \pi + \pi - \pi + \pi = \pi \] ### Conclusion Now we have: \[ J = \frac{3\pi}{2}, \quad K = \pi \] ### Step 3: Analyze the options 1. \( 2J + 3K = 2 \cdot \frac{3\pi}{2} + 3\pi = 3\pi + 3\pi = 6\pi \) (Incorrect) 2. \( 4J^2 + K^2 = 4\left(\frac{3\pi}{2}\right)^2 + \pi^2 = 4 \cdot \frac{9\pi^2}{4} + \pi^2 = 9\pi^2 + \pi^2 = 10\pi^2 \) (Incorrect) 3. \( 2J = 3K \) gives \( 2 \cdot \frac{3\pi}{2} = 3\pi \) (Correct) 4. \( \frac{J}{K} = \frac{\frac{3\pi}{2}}{\pi} = \frac{3}{2} \) (Correct) ### Final Answer The correct alternatives are: - 3. \( 2J = 3K \) - 4. \( \frac{J}{K} = \frac{3}{2} \)
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|16 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|2 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|29 Videos
  • HYPERBOLA

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|6 Videos

Similar Questions

Explore conceptually related problems

int\ cot^(-1)x\ dx

int_(0)^( pi)(dx)/(1+sin x)

int cot^-1 x dx

int_(0)^(pi/2) sin 2x tan^(-1) (sin x) dx

int(1)/(cos x . cot x ) dx

int_(0)^( 2 pi)(dx)/(1+e^{sin x})

int\ (tan^(-1)x - cot^(-1)x)/(tan^(-1)x + cot^(-1)x) \ dx equals

int_(0)^(1) sin^(-1) x dx =(pi)/(2) -1

int_(0)^( 2 pi)(dx)/(1+2^{sin x})

int_(0)^(pi//6) sqrt(1-sin 2x) dx