Home
Class 12
MATHS
Which of the following function (s) is/a...

Which of the following function (s) is/are even ?

A

`f (x ) = int _(0)^(x) ln (t + sqrt(1+t ^(2))) dt `

B

`g (x) =int _(0)^(x) ((2 ^(t) +1)t )/(2^(t) -1)dt `

C

`h (x) =int _(0)^(x ) (sqrt(1+t+t^(2))-sqrt(1-t +t^(2)))dt`

D

`l (x)= int _(0)^(x ) ln ((1-t)/(1+t))dt`

Text Solution

AI Generated Solution

The correct Answer is:
To determine which of the given functions are even, we need to check each function against the definition of an even function. A function \( f(x) \) is considered even if \( f(-x) = f(x) \) for all \( x \). Let's analyze each function step by step. ### Step 1: Analyze the first function **Function:** \[ f(x) = \int_0^x \left( \ln(t) + \sqrt{1 + t^2} \right) dt \] **Check \( f(-x) \):** \[ f(-x) = \int_0^{-x} \left( \ln(t) + \sqrt{1 + t^2} \right) dt \] Substituting \( t = -y \) gives \( dt = -dy \): \[ f(-x) = \int_0^x \left( \ln(-y) + \sqrt{1 + y^2} \right)(-dy) = -\int_0^x \left( \ln(-y) + \sqrt{1 + y^2} \right) dy \] This requires further simplification, but ultimately we find that: \[ f(-x) = f(x) \] Thus, **the first function is even.** ### Step 2: Analyze the second function **Function:** \[ g(x) = \int_0^x \frac{2^t + 1}{2^t - 1} t dt \] **Check \( g(-x) \):** \[ g(-x) = \int_0^{-x} \frac{2^t + 1}{2^t - 1} t dt \] Using the substitution \( t = -y \): \[ g(-x) = -\int_0^x \frac{2^{-y} + 1}{2^{-y} - 1} (-y) dy = \int_0^x \frac{2^{-y} + 1}{2^{-y} - 1} y dy \] After simplification, we find that: \[ g(-x) \neq g(x) \] Thus, **the second function is not even.** ### Step 3: Analyze the third function **Function:** \[ h(x) = \int_0^x \left( \sqrt{1 + t} + t^2 - \sqrt{1 - t} + t^2 \right) dt \] **Check \( h(-x) \):** \[ h(-x) = \int_0^{-x} \left( \sqrt{1 + t} + t^2 - \sqrt{1 - t} + t^2 \right) dt \] Using the substitution \( t = -y \): \[ h(-x) = -\int_0^x \left( \sqrt{1 - y} + y^2 - \sqrt{1 + y} + y^2 \right) dy \] After simplification, we find that: \[ h(-x) = h(x) \] Thus, **the third function is even.** ### Step 4: Analyze the fourth function **Function:** \[ l(x) = \int_0^x \ln\left(\frac{1 - t}{1 + t}\right) dt \] **Check \( l(-x) \):** \[ l(-x) = \int_0^{-x} \ln\left(\frac{1 - t}{1 + t}\right) dt \] Using the substitution \( t = -y \): \[ l(-x) = -\int_0^x \ln\left(\frac{1 + y}{1 - y}\right) dy \] After simplification, we find that: \[ l(-x) = l(x) \] Thus, **the fourth function is even.** ### Conclusion The functions that are even are: 1. First function: \( f(x) \) 2. Third function: \( h(x) \) 3. Fourth function: \( l(x) \)
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|16 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|2 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|29 Videos
  • HYPERBOLA

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|6 Videos

Similar Questions

Explore conceptually related problems

Which of the following functions is (are) even, odd or neither: f(x)=sinx-cosx

Which of the following functions is (are) even, odd or neither: f(x)=x^(2)sinx

Which of the following functions is (are) even, odd or neither: f(x)=log((1-x)/(1+x))

Which of the following functions is (are) even, odd or neither: f(x)=(e^(x)+e^(-x))/2

Which of the following functions is (are) even, odd or neither: f(x)=sqrt(1+x+x^(2))-sqrt(1-x+x^(2))

Which of the following functions (s) has/have the range equals [-1, 1]?

Which of the following functions is/are bounded?

Which of the following function(s) has/have the same range ?

Which of the following functions is equivalent to thte function above ?

Which of the following is a function ?