Home
Class 12
MATHS
Let L = lim (n to oo)int (a)^(oo)(n dx )...

Let `L = lim _(n to oo)int _(a)^(oo)(n dx )/(1+n ^(2)x ^(2))` where ` a in R` then L can be:

A

`pi`

B

`pi/2`

C

`0`

D

`pi/3`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|16 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|2 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|29 Videos
  • HYPERBOLA

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|6 Videos

Similar Questions

Explore conceptually related problems

Let L= lim_(nrarr infty) int_(a)^(infty)(n dx)/(1+n^(2)x^(2)) , where a in R, then L can be

Let L= underset(nrarr infty)(lim)int_(a)^(infty)(n dx)/(1+n^(2)x^(2)) , where a in R, then L can be

Let L=lim_(nrarroo)int_a^oo (ndx)/(1+n^2x^2) where a in R then cos L can be (A) -1 (B) 0 (C) 1 (D) 1/2

lim_(n to oo) sum_(r=1)^(n) (1)/(n)e^(r//n) is

lim_(n to oo)(n!)/((n+1)!-n!)

Let f(x)= lim_(n->oo)(sinx)^(2n)

lim_(n rarr oo)2^(1/n)

lim_(nto oo)sum_(r=1)^(n)r/(n^(2)+n+4) equals

Let f(x)=lim_(n to oo) ((2 sin x)^(2n))/(3^(n)-(2 cos x)^(2n)), n in Z . Then

lim_(n->oo) nsin(1/n)