Home
Class 12
MATHS
Let I =int (0)^(1 ) sqrt((1+sqrtx)/(1-sq...

Let `I =int _(0)^(1 ) sqrt((1+sqrtx)/(1-sqrtx))` dx then correct statement (s) is/are:

A

`I=2`

B

`I =pi`

C

`I =2+(pi)/(2)`

D

`I =(4-pi)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^1 \sqrt{\frac{1 + \sqrt{x}}{1 - \sqrt{x}}} \, dx \), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int_0^1 \sqrt{\frac{1 + \sqrt{x}}{1 - \sqrt{x}}} \, dx \] ### Step 2: Rationalize the Expression To simplify the integrand, we can rationalize it: \[ \sqrt{\frac{1 + \sqrt{x}}{1 - \sqrt{x}}} = \frac{\sqrt{1 + \sqrt{x}}}{\sqrt{1 - \sqrt{x}}} \] Thus, we can rewrite the integral as: \[ I = \int_0^1 \frac{\sqrt{1 + \sqrt{x}}}{\sqrt{1 - \sqrt{x}}} \, dx \] ### Step 3: Substitute \( u = \sqrt{x} \) Let \( u = \sqrt{x} \), then \( x = u^2 \) and \( dx = 2u \, du \). The limits change from \( x = 0 \) to \( x = 1 \) which corresponds to \( u = 0 \) to \( u = 1 \). The integral becomes: \[ I = \int_0^1 \frac{\sqrt{1 + u}}{\sqrt{1 - u}} \cdot 2u \, du = 2 \int_0^1 \frac{u \sqrt{1 + u}}{\sqrt{1 - u}} \, du \] ### Step 4: Split the Integral We can split the integral into two parts: \[ I = 2 \left( \int_0^1 \frac{u}{\sqrt{1 - u}} \, du + \int_0^1 \frac{u^{3/2}}{\sqrt{1 - u}} \, du \right) \] ### Step 5: Evaluate the First Integral The first integral can be evaluated using the substitution \( v = 1 - u \): \[ \int_0^1 \frac{u}{\sqrt{1 - u}} \, du = \int_0^1 \frac{1 - v}{\sqrt{v}} \, dv = \int_0^1 \left( \frac{1}{\sqrt{v}} - \sqrt{v} \right) \, dv \] Calculating this gives: \[ = \left[ 2\sqrt{v} - \frac{2}{3}v^{3/2} \right]_0^1 = 2 - \frac{2}{3} = \frac{4}{3} \] ### Step 6: Evaluate the Second Integral For the second integral: \[ \int_0^1 \frac{u^{3/2}}{\sqrt{1 - u}} \, du \] Using the same substitution \( v = 1 - u \): \[ = \int_0^1 (1 - v)^{3/2} v^{-1/2} \, dv \] This can be computed using the beta function or directly: \[ = \frac{8}{15} \] ### Step 7: Combine the Results Now we can combine the results: \[ I = 2 \left( \frac{4}{3} + \frac{8}{15} \right) = 2 \left( \frac{20}{15} + \frac{8}{15} \right) = 2 \cdot \frac{28}{15} = \frac{56}{15} \] ### Final Result Thus, the value of the integral \( I \) is: \[ I = \frac{56}{15} \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|16 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|2 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|29 Videos
  • HYPERBOLA

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|6 Videos

Similar Questions

Explore conceptually related problems

Let I =int _(0)^(1 ) sqrt((1+sqrtx)/(1-sqrtx))dx and J = int _(0)^(1 ) sqrt((1-sqrtx)/(1+sqrtx))dx then correct statement (s) is/are:

int (a^sqrtx)/(sqrtx) dx equals

int (1/sqrtx-sqrtx)dx

int (1-x) sqrtx dx

int_(0)^(1)(1)/(sqrt(1+x)-sqrt(x))dx

If I=int_(0)^(1) (dx)/(sqrt(1+x^(4)))dx then

int_(0)^(1) (1)/(sqrt(1-x^(2)))dx

int_0^1 sqrt((1-x)/(1+x)) dx

int e^(sqrtx) dx

"int5sqrtx dx