Home
Class 12
MATHS
Let f (x) be function defined on [0,1] ...

Let `f (x)` be function defined on `[0,1] ` such that `f (1)=0` and for any `a in (0,1], int _(0)^(a) f (x) dx - int _(a)^(1) f (x) dx =2 f (a) +3a +b` where b is constant.
The length of the subtangent of the curve ` y= f (x ) at x=1//2` is:

A

`sqrte-1`

B

`(sqrte-1)/(2)`

C

`sqrte+1`

D

`(sqrte+1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the given conditions and use integration properties to find the length of the subtangent of the curve \( y = f(x) \) at \( x = \frac{1}{2} \). ### Step 1: Understanding the given condition We are given that for any \( a \in (0, 1] \): \[ \int_0^a f(x) \, dx - \int_a^1 f(x) \, dx = 2f(a) + 3a + b \] where \( b \) is a constant. ### Step 2: Simplifying the integral expression Using the property of definite integrals, we can rewrite the left-hand side: \[ \int_0^1 f(x) \, dx = \int_0^a f(x) \, dx + \int_a^1 f(x) \, dx \] Thus, we can express the equation as: \[ \int_0^a f(x) \, dx = \int_0^1 f(x) \, dx - \int_a^1 f(x) \, dx \] Substituting this into our original equation gives: \[ \int_0^a f(x) \, dx - \int_a^1 f(x) \, dx = 2f(a) + 3a + b \] ### Step 3: Applying Newton-Leibniz formula Using the Newton-Leibniz formula, we differentiate both sides with respect to \( a \): \[ f(a) - (-f(a)) = 2f'(a) + 3 \] This simplifies to: \[ 2f(a) = 2f'(a) + 3 \] Thus, we have: \[ f(a) = f'(a) + \frac{3}{2} \] ### Step 4: Rearranging the equation Rearranging gives us: \[ f'(a) = f(a) - \frac{3}{2} \] ### Step 5: Solving the differential equation This is a first-order linear differential equation. We can solve it using the method of integrating factors. The integrating factor \( e^{\int 1 \, da} = e^a \): \[ e^a f'(a) - \frac{3}{2} e^a = \frac{d}{da}(e^a f(a)) \] Integrating both sides: \[ \int \frac{d}{da}(e^a f(a)) \, da = \int \left( \frac{3}{2} e^a \right) \, da \] This gives: \[ e^a f(a) = \frac{3}{2} e^a + C \] where \( C \) is a constant. ### Step 6: Finding \( f(a) \) Dividing by \( e^a \): \[ f(a) = \frac{3}{2} + Ce^{-a} \] ### Step 7: Using the condition \( f(1) = 0 \) Substituting \( a = 1 \): \[ 0 = \frac{3}{2} + Ce^{-1} \] Thus, we find: \[ C = -\frac{3}{2} e \] So, \[ f(a) = \frac{3}{2} - \frac{3}{2} e^{-a} \] ### Step 8: Finding \( f\left(\frac{1}{2}\right) \) and \( f'\left(\frac{1}{2}\right) \) Now, we need to find \( f\left(\frac{1}{2}\right) \): \[ f\left(\frac{1}{2}\right) = \frac{3}{2} - \frac{3}{2} e^{-\frac{1}{2}} = \frac{3}{2}(1 - e^{-\frac{1}{2}}) \] Next, we find \( f'(a) \): \[ f'(a) = \frac{3}{2} e^{-a} \] Thus, \[ f'\left(\frac{1}{2}\right) = \frac{3}{2} e^{-\frac{1}{2}} \] ### Step 9: Finding the length of the subtangent The length of the subtangent at \( x = \frac{1}{2} \) is given by: \[ \text{Length of subtangent} = \frac{|f\left(\frac{1}{2}\right)|}{f'\left(\frac{1}{2}\right)} \] Substituting the values: \[ \text{Length of subtangent} = \frac{\frac{3}{2}(1 - e^{-\frac{1}{2}})}{\frac{3}{2} e^{-\frac{1}{2}}} = \frac{1 - e^{-\frac{1}{2}}}{e^{-\frac{1}{2}}} \] This simplifies to: \[ \text{Length of subtangent} = e^{\frac{1}{2}}(1 - e^{-\frac{1}{2}}) = \sqrt{e}(1 - \frac{1}{\sqrt{e}}) = \sqrt{e} - 1 \] ### Final Answer The length of the subtangent of the curve \( y = f(x) \) at \( x = \frac{1}{2} \) is: \[ \sqrt{e} - 1 \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|2 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|29 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|15 Videos
  • HYPERBOLA

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|6 Videos

Similar Questions

Explore conceptually related problems

Let f (x) be function defined on [0,1] such that f (1)=0 and for any a in (0,1], int _(0)^(a) f (x) dx - int _(a)^(1) f (x) dx =2 f (a) +3a +b where b is constant. b=

Let f (x) be a conitnuous function defined on [0,a] such that f(a-x)=f(x)"for all" x in [ 0,a] . If int_(0)^(a//2) f(x) dx=alpha, then int _(0)^(a) f(x) dx is equal to

Let a gt 0 and f(x) is monotonic increase such that f(0)=0 and f(a)=b, "then " int_(0)^(a) f(x) dx +int_(0)^(b) f^(-1) (x) dx is equal to

Prove that int_(0)^(2a)f(x)dx=int_(0)^(a)[f(a-x)+f(a+x)]dx

Prove that int_(a)^(b)f(x)dx=(b-a)int_(0)^(1)f((b-a)x+a)dx

If | int_(a)^(b) f(x)dx|= int_(a)^(b)|f(x)|dx,a ltb,"then " f(x)=0 has

Let f(x) be a function defined on R satisfyin f(x) =f(1-x) for all x in R . Then int_(-1//2)^(1//2) f(x+(1)/(2))sin x dx equals

Consider the function defined on [0,1] rarr R , f(x) =(sinx- xcosx)/(x^(2)), if x ne 0 and f(0) =0 int _(0)^(1)f(x) is equal to

Let f(x) be a continuous function such that f(a-x)+f(x)=0 for all x in [0,a] . Then int_0^a dx/(1+e^(f(x)))= (A) a (B) a/2 (C) 1/2f(a) (D) none of these

If f'(x) = f(x)+ int _(0)^(1)f (x) dx and given f (0) =1, then int f (x) dx is equal to :