Home
Class 12
MATHS
Let f :R to [(3)/(4), oo) be a surjectiv...

Let `f :R to [(3)/(4), oo)` be a surjective quadratic function with line of symmetry `2x -1=0 and f (1) =1`
`int (e ^(x))/(f (e ^(x)))dx`

A

`cot ^(-1) ((2x ^(2) -1)/(sqrt3))+C`

B

`(2)/(sqrt3)cot ^(-1) ((2x ^(2) -1)/(sqrt3))+C`

C

`tan ^(-1) ((2x ^(2) -1)/(sqrt3))+C`

D

`(2)/(sqrt3)tan ^(-1) ((2e^(x) -1)/(sqrt3))+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we will follow the procedure outlined in the video transcript. The problem involves finding the integral of the function \( \frac{e^x}{f(e^x)} \), where \( f \) is a surjective quadratic function. ### Step 1: Determine the quadratic function \( f(x) \) Given the line of symmetry \( 2x - 1 = 0 \), we can find the vertex of the quadratic function. The line of symmetry is given by \( x = \frac{1}{2} \). Since \( f \) is a surjective quadratic function that takes values from \( \frac{3}{4} \) to \( \infty \), we can express \( f(x) \) in vertex form: \[ f(x) = a\left(x - \frac{1}{2}\right)^2 + \frac{3}{4} \] ### Step 2: Use the condition \( f(1) = 1 \) We know that \( f(1) = 1 \). Substituting \( x = 1 \) into the function gives: \[ f(1) = a\left(1 - \frac{1}{2}\right)^2 + \frac{3}{4} = a\left(\frac{1}{2}\right)^2 + \frac{3}{4} = \frac{a}{4} + \frac{3}{4} \] Setting this equal to 1: \[ \frac{a}{4} + \frac{3}{4} = 1 \] Subtracting \( \frac{3}{4} \) from both sides: \[ \frac{a}{4} = 1 - \frac{3}{4} = \frac{1}{4} \] Multiplying both sides by 4: \[ a = 1 \] ### Step 3: Write the function \( f(x) \) Substituting \( a = 1 \) back into the function: \[ f(x) = \left(x - \frac{1}{2}\right)^2 + \frac{3}{4} \] Expanding this: \[ f(x) = \left(x^2 - x + \frac{1}{4}\right) + \frac{3}{4} = x^2 - x + 1 \] ### Step 4: Find \( f(e^x) \) Now, we need to find \( f(e^x) \): \[ f(e^x) = (e^x)^2 - e^x + 1 = e^{2x} - e^x + 1 \] ### Step 5: Set up the integral We need to evaluate the integral: \[ \int \frac{e^x}{f(e^x)} \, dx = \int \frac{e^x}{e^{2x} - e^x + 1} \, dx \] ### Step 6: Substitute \( t = e^x \) Let \( t = e^x \), then \( dx = \frac{dt}{t} \). The integral becomes: \[ \int \frac{t}{t^2 - t + 1} \cdot \frac{dt}{t} = \int \frac{1}{t^2 - t + 1} \, dt \] ### Step 7: Complete the square in the denominator To integrate \( \frac{1}{t^2 - t + 1} \), we complete the square: \[ t^2 - t + 1 = \left(t - \frac{1}{2}\right)^2 + \frac{3}{4} \] ### Step 8: Perform the integral Now, we can use the formula for the integral of the form \( \int \frac{1}{x^2 + a^2} \): \[ \int \frac{1}{\left(t - \frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} \, dt = \frac{2}{\sqrt{3}} \tan^{-1}\left(\frac{2(t - \frac{1}{2})}{\sqrt{3}}\right) + C \] ### Step 9: Substitute back \( t = e^x \) Substituting back \( t = e^x \): \[ \frac{2}{\sqrt{3}} \tan^{-1}\left(\frac{2(e^x - \frac{1}{2})}{\sqrt{3}}\right) + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{e^x}{f(e^x)} \, dx = \frac{2}{\sqrt{3}} \tan^{-1}\left(\frac{2e^x - 1}{\sqrt{3}}\right) + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|2 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|29 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|15 Videos
  • HYPERBOLA

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|6 Videos

Similar Questions

Explore conceptually related problems

Let f :R to [(3)/(4), oo) be a surjective quadratic function with line of symmetry 2x -1=0 and f (1) =1 If g (x)=(f(x)+f(-x))/(2 ) then int (dx)/(sqrt(g (e ^(x))-2)) is equal to:

Let f : R rarr R : f(x) = (2x-3)/(4) be an invertible function. Find f^(-1) .

Let f:R ->(0,oo) be a real valued function satisfying int_0^x tf(x-t) dt =e^(2x)-1 then find f(x) ?

Let f :R ^(+) to R be a differentiable function with f (1)=3 and satisfying : int _(1) ^(xy) f(t) dt =y int_(1) ^(x) f (t) dt +x int_(1) ^(y) f (t) dt AA x, y in R^(+), then f (e) =

Let f:(0,oo)->R be a differentiable function such that f'(x)=2-f(x)/x for all x in (0,oo) and f(1)=1 , then

Let f (x) be a quadratic function such that f (0) =1 and f(-1)=4, ifint(f(x))/(x^(2)(1+x)^(2))dx is a rational function then the value of f(10)

Let f:(0,oo)->R be a differentiable function such that f'(x)=2-f(x)/x for all x in (0,oo) and f(1)=1 , then f(x) is

Let f (x) be a twice differentiable function defined on (-oo,oo) such that f (x) =f (2-x)and f '((1)/(2 )) =f' ((1)/(4))=0. Then int _(-1) ^(1) f'(1+ x ) x ^(2) e ^(x ^(2))dx is equal to :

Let f be a differentiable function such that f'(x) = f(x) + int_(0)^(2) f(x) dx and f(0) = (4-e^(2))/(3) . Find f(x) .

Let a function f:R to R be defined as f (x) =x+ sin x. The value of int _(0) ^(2pi)f ^(-1)(x) dx will be: