Home
Class 12
MATHS
Let g (x ) = x ^(C )e ^(Cx) and f (x) = ...

Let `g (x ) = x ^(C )e ^(Cx) and f (x) = int _(0)^(x) te ^(2r) (1+3t ^(2))^(1//2) dt. If L = lim _(x to oo) (f'(x ))/(g '(x))` is non-zero finite number then :
The valur of C is:

A

7

B

`3/2`

C

`2`

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( C \) such that the limit \[ L = \lim_{x \to \infty} \frac{f'(x)}{g'(x)} \] is a non-zero finite number. ### Step 1: Define the functions We have: \[ g(x) = x^C e^{Cx} \] and \[ f(x) = \int_0^x t e^{2t} \sqrt{1 + 3t^2} \, dt \] ### Step 2: Differentiate \( g(x) \) Using the product rule, we differentiate \( g(x) \): \[ g'(x) = \frac{d}{dx}(x^C e^{Cx}) = C x^{C-1} e^{Cx} + x^C \cdot C e^{Cx} = C e^{Cx} (x^{C-1} + x^C) = C e^{Cx} x^{C-1}(1 + x) \] ### Step 3: Differentiate \( f(x) \) Using the Fundamental Theorem of Calculus, we differentiate \( f(x) \): \[ f'(x) = x e^{2x} \sqrt{1 + 3x^2} \] ### Step 4: Set up the limit Now we set up the limit: \[ L = \lim_{x \to \infty} \frac{f'(x)}{g'(x)} = \lim_{x \to \infty} \frac{x e^{2x} \sqrt{1 + 3x^2}}{C e^{Cx} x^{C-1}(1 + x)} \] ### Step 5: Simplify the limit We can simplify the limit: \[ L = \lim_{x \to \infty} \frac{x e^{2x} \sqrt{1 + 3x^2}}{C e^{Cx} x^{C-1}(1 + x)} = \lim_{x \to \infty} \frac{e^{2x} \sqrt{1 + 3x^2}}{C e^{Cx} x^{C-2}(1 + x)} \] ### Step 6: Analyze the limit As \( x \to \infty \), we can approximate: \[ \sqrt{1 + 3x^2} \approx \sqrt{3} x \] Thus, \[ L = \lim_{x \to \infty} \frac{e^{2x} \sqrt{3} x}{C e^{Cx} x^{C-2}(1 + x)} = \lim_{x \to \infty} \frac{\sqrt{3} x e^{2x}}{C e^{Cx} x^{C-2}(1 + x)} \] ### Step 7: Further simplification This can be simplified to: \[ L = \lim_{x \to \infty} \frac{\sqrt{3} x e^{2x}}{C e^{Cx} x^{C-2}(x)} = \lim_{x \to \infty} \frac{\sqrt{3} e^{2x}}{C e^{Cx} x^{C-1}} \] ### Step 8: Determine conditions for a finite limit For \( L \) to be finite and non-zero, the exponent of \( e \) in the numerator must equal the exponent in the denominator, which gives: \[ 2 - C = 0 \implies C = 2 \] ### Conclusion Thus, the value of \( C \) is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|2 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|29 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|15 Videos
  • HYPERBOLA

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|6 Videos

Similar Questions

Explore conceptually related problems

Let g (x ) = x ^(C )e ^(Cx) and f (x) = int _(0)^(x) te ^(2t) (1+3t ^(2))^(1//2) dt. If L = lim _(x to oo) (f'(x ))/(g '(x)) is non-zero finite number then : The value of L . Is :

If f(x) = int_(0)^(x) e^(t^(2)) (t-2) (t-3) dt for all x in (0, oo) , then

Let f(x) = int_(-2)^(x)|t + 1|dt , then

If f (x) =e^(x)+ int_(0)^(1) (e^(x)+te^(-x))f (t) dt, find f(x) .

Let f : (0,oo) to R and F(x)=int_(0)^(x)t f(t)dt . If F(x^(2))=x^(4)+x^(5) , then

if int_(0)^f(x) 4x^(3)dx=g(x)(x-2) if f(2)=6 and f'(2)=(1)/(48) then find lim_(x to 2) g(x)

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

Let f(x)=int_(0)^(x)e^(t)(t-1)(t-2)dt. Then, f decreases in the interval

Let f:(0,oo)to R and F(x)=int_(0)^(x) f(t)dt. " If " F(x^(2))=x^(2)(1+x) , then f(4) equals

If f (x) =int _(0)^(g(x))(dt)/(sqrt(1+t ^(3))),g (x) = int _(0)^(cos x ) (1+ sint ) ^(2) dt, then the value of f'((pi)/(2)) is equal to: